Skip to main content
Log in

Optical properties of reduced graphene oxide nanodots prepared by laser ablation

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

The effect of the laser ablation duration of reduced graphene oxide sheets on their optical properties was studied. After 30 min of ablation, the average lateral size of reduced graphene oxide sheets decreases from 347.4 ± 86.5 nm to 98.8 ± 36.0. The sizes of almost all particles are in the range up to 100 nm, which was confirmed by transmission electron microscopy and dynamic light scattering data. The FTIR spectroscopy data showed that after ablation the intensity of the bands associated with O–H, C–OH and C=O vibrations were noticeably decreased. The optical density and the fluorescence intensity of reduced graphene oxide also depend on the ablation time. After ablation, the reduced graphene oxide fluorescence intensity increased 2–3 times. The fluorescence lifetime decreases both for the first (from 1.36 ns to 0.71 ns) and second (from 6.03 to 3.66 ns) components. A broad band was recorded in the long-lived luminescence spectrum. The long-lived luminescence intensity is higher on 80% for the samples after 30 min of ablation compared to the unablated sample. It was assumed that during laser ablation of reduced graphene oxide a change in the ratio between oxidized and sp2-hybridized carbon occurs. This opens up possibilities for controlling the optical properties of reduced graphene oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yang M, Chen Y, Wang H, Yilun Zou WuP, Zou J, Jiang J (2022) Solvothermal preparation of CeO2 nanoparticles–graphene nanocomposites as an electrochemical sensor for sensitive detecting pentachlorophenol. Carbon Lett. https://doi.org/10.1007/s42823-022-00353-7

    Article  Google Scholar 

  2. Jiang J, Ou-yang L, Zhu L, Zheng A, Zou J, Yi X, Tang H (2014) Dependence of electronic structure of g-C 3 N 4 on the layer number of its nanosheets: a study by Raman spectroscopy coupled with first-principles calculations. Carbon 80:213–221. https://doi.org/10.1016/j.carbon.2014.08.059

    Article  CAS  Google Scholar 

  3. Zhu S, Song Y, Zhao X, Shao J, Zhang J, Yang B (2015) The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Res 8(2):355–381. https://doi.org/10.1007/s12274-014-0644-3

    Article  CAS  Google Scholar 

  4. Kwon W, Kim YH, Kim JH, Lee T, Do S, Park Y (2016) High color-purity green, orange, and red light-emitting diodes based on chemically functionalized graphene quantum dots. Sci Rep 6:24205. https://doi.org/10.1038/SREP24205

    Article  CAS  Google Scholar 

  5. Mahalingam S, Manap A, Omar A, Low FW (2021) Functionalized graphene quantum dots for dye-sensitized solar cell: key challenges, recent developments and future prospects. Renew Sustain Energy Rev 144:110999. https://doi.org/10.1016/j.rser.2021.110999

    Article  CAS  Google Scholar 

  6. Moqbel RA, Gondal MA, Qahtan TF, Dastageer MA (2018) Synthesis of cadmium sulfide-reduced graphene oxide nanocomposites by pulsed laser ablation in liquid for the enhanced photocatalytic reactions in the visible light. Int J Energy Res 42(4):1487–1495. https://doi.org/10.1002/er.3935

    Article  CAS  Google Scholar 

  7. Khaleghi Abbasabadi M, Esmaili Zand HR, Khodabakhshi S, Gholami P, Rashidi A (2021) Synthesis of new functionalized reduced graphene oxide quantum dot composite for high-performance NO2 gas sensor. Res Chem Intermed 47(6):2279–2296. https://doi.org/10.1007/s11164-020-04393-4

    Article  CAS  Google Scholar 

  8. Hwang J, Le ADD, Trinh CT, Le QT, Lee K-G, Kim J (2021) Green synthesis of reduced-graphene oxide quantum dots and application for colorimetric biosensor. Sens Actuators A 318:112495. https://doi.org/10.1016/j.sna.2020.112495

    Article  CAS  Google Scholar 

  9. Hu H, Quan H, Zhong B, Li Z, Huang Y, Wang X, Chen D (2018) A reduced graphene oxide quantum dot-based adsorbent for efficiently binding with organic pollutants. ACS Appl Nano Mater 1(11):6502–6513. https://doi.org/10.1021/acsanm.8b01799

    Article  CAS  Google Scholar 

  10. Zou J, Wu Sh, Yi L et al (2018) An ultra-sensitive electrochemical sensor based on 2D g-C3N4/CuO nanocomposites for dopamine detection. Carbon 130(1):652–663. https://doi.org/10.1016/j.carbon.2018.01.00

    Article  CAS  Google Scholar 

  11. Justin R, Tao K, Roman S, Chen D, Xu Y, Geng X, Chen B (2016) Photoluminescent and superparamagnetic reduced graphene oxide–iron oxide quantum dots for dual-modality imaging, drug delivery and photothermal therapy. Carbon 97:54–70. https://doi.org/10.1016/j.carbon.2015.06.070

    Article  CAS  Google Scholar 

  12. Kang S, Kim KM, Jung K, Son Y, Mhin S, Ryu JH, Song T (2019) Graphene oxide quantum dots derived from coal for bioimaging: facile and green approach. Sci Rep 9:4101. https://doi.org/10.1038/s41598-018-37479-6

    Article  CAS  Google Scholar 

  13. Zhang Y, Yang C, Yang D, Shao Z, Hu Y, Chen J, Wang L (2018) Reduction of graphene oxide quantum dots to enhance the yield of reactive oxygen species for photodynamic therapy. Phys Chem Chem Phys 20(25):17262–17267. https://doi.org/10.1039/C8CP01990H

    Article  CAS  Google Scholar 

  14. De Paula RF, Rosa IA, Gafanhão IFM et al (2020) Reduced graphene oxide, but not carbon nanotubes, slows murine melanoma after thermal ablation using LED light in B16F10 lineage cells. Nanomed NBM 28:102231. https://doi.org/10.1016/j.nano.2020.102231

    Article  CAS  Google Scholar 

  15. Zhu S, Song Y, Zhao X et al (2015) The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Res 8:355–381. https://doi.org/10.1007/s12274-014-0644-3

    Article  CAS  Google Scholar 

  16. Mokoloko LL, Matsoso BJ, Forbes RP et al (2021) Evolution of large-area reduced graphene oxide nanosheets from carbon dots via thermal treatment. Carbon Trends 4:100074. https://doi.org/10.1016/j.cartre.2021.100074

    Article  Google Scholar 

  17. Jiang J, Li N, Zou J, Zhou X et al (2019) Synergistic additive-mediated CVD growth and chemical modification of 2D materials. Chem Soc Rev 48:4639–4654. https://doi.org/10.1039/c9cs00348g

    Article  CAS  Google Scholar 

  18. Luong DX, Bets KV, Algozeeb WA et al (2020) Gram-scale bottom-up flash graphene synthesis. Nature 577:647–651. https://doi.org/10.1038/s41586-020-1938-0

    Article  CAS  Google Scholar 

  19. Madurani KA, Suprapto S, Izzati Machrita N et al (2020) Progress in graphene synthesis and its application: history, challenge and the future outlook for research and industry. ECS J Solid State Sci Technol 9:093013. https://doi.org/10.1149/2162-8777/abbb6f

    Article  CAS  Google Scholar 

  20. Narasimhan AK, Lakshmi BS, Santra TS, Rao MSR, Krishnamurthi G (2017) Oxygenated graphene quantum dots (GQDs) synthesized using laser ablation for long-term real-time tracking and imaging. RSC Adv 7(85):53822–53829. https://doi.org/10.1039/C7RA10702A

    Article  CAS  Google Scholar 

  21. Seliverstova E, Ibrayev N, Menshova E (2021) Modification of structure and optical properties of graphene oxide dots, prepared by laser ablation method. Fullerenes, Nanotubes, Carbon Nanostruct 30(1):119–125. https://doi.org/10.1080/1536383X.2021.1984899

    Article  Google Scholar 

  22. Seliverstova E, Ibrayev N, Menshova E, Alikhaidarova E (2021) Laser modification of structure and optical properties of N-doped graphene oxide. Mater Res Express 8(11):115601. https://doi.org/10.1088/2053-1591/ac31fc

    Article  CAS  Google Scholar 

  23. Lin TN, Chih KH, Yuan CT, Shen JL, Lin CAJ, Liu WR (2015) Laser-ablation production of graphene oxide nanostructures: from ribbons to quantum dots. Nanoscale 7(6):2708–2715. https://doi.org/10.1039/C4NR05737F

    Article  CAS  Google Scholar 

  24. Sadeghi H, Solati E, Dorranian D (2019) Producing graphene nanosheets by pulsed laser ablation: effects of liquid environment. J Laser Appl 31:042003. https://doi.org/10.2351/1.5109424

    Article  CAS  Google Scholar 

  25. Tetsuka H, Asahi R, Nagoya A et al (2012) Optically tunable amino-functionalized graphene quantum dots. Adv Mater 24:5333–5338. https://doi.org/10.1002/adma.201201930

    Article  CAS  Google Scholar 

  26. Milenov T, Dimov D, Nikolov A et al (2021) Synthesis of graphene–like phases by laser ablation of micro-crystalline graphite in water suspension. Surf Interf 27:101491. https://doi.org/10.1016/j.surfn.2021.101491

    Article  CAS  Google Scholar 

  27. Guan YC, Fang YW, Lim GC, Zheng HY, Hong MH (2016) Fabrication of laser-reduced graphene oxide in liquid nitrogen environment. Sci Rep 6(1):28913. https://doi.org/10.1038/SREP28913

    Article  CAS  Google Scholar 

  28. Seliverstova EV, Ibrayev NKh, Zhumabekov AZh (2020) The effect of silver nanoparticles on the photodetecting properties of the TiO2/graphene oxide nanocomposite. Opt Spectrosc 128(9):1449–1457. https://doi.org/10.1134/s0030400x20090192

    Article  CAS  Google Scholar 

  29. Zhumabekov AZ, Ibrayev NK, Seliverstova EV (2020) Photoelectric Properties of a nanocomposite derived from reduced graphene oxide and TiO2. Theor Exp Chem 55(6):398–406. https://doi.org/10.1007/s11237-020-09632-8

    Article  CAS  Google Scholar 

  30. Ashritha MG, Rondiy SR, Cross RW et al (2021) Experimental and computational studies of sonochemical assisted anchoring of carbon quantum dots on reduced graphene oxide sheets towards the photocatalytic activity. Appl Surf Sci 545:148962. https://doi.org/10.1016/j.apsusc.2021.148962

    Article  CAS  Google Scholar 

  31. Aziz HM, Al-Mamoori MHK, Aboud LH (2021) Synthesis and characterization of TiO2-RGO nanocomposite by pulsed laser ablation in liquid (PLAL-method). J Phys Conf Ser 818(1):012206. https://doi.org/10.1088/1742-6596/1818/1/012206

    Article  CAS  Google Scholar 

  32. Ibrayev N, Zhumabekov A, Ghyngazov S, Lysenko E (2019) Synthesis and study of the properties of nanocomposite materials TiO2-GO and TiO2-rGO. Materl Resh Express 6(11):1–11

    Google Scholar 

  33. Hu C, Liu Y, Rong J, Liu Q (2015) Preparation of reduced graphene oxide and copper sulfide nanoplates composites as efficient photothermal agents for ablation of cancer cells. NANO 10(08):1550123. https://doi.org/10.1142/S1793292015501234

    Article  CAS  Google Scholar 

  34. Dash BS, Jose G, Lu Y-J, Chen J-P (2021) Functionalized reduced graphene oxide as a versatile tool for cancer therapy. Int J Mol Sci 22:2989. https://doi.org/10.3390/ijms22062989

    Article  CAS  Google Scholar 

  35. Ershov IV, Lavrentyev AA, Prutsakova NV et al (2021) Characterization of graphenic carbon produced by pulsed laser ablation of sacrificial carbon tapes. Appl Sci 11(24):11972. https://doi.org/10.3390/app112411972

    Article  CAS  Google Scholar 

  36. Alnayli RSh, Alkhazaali H, Hakim Z (2019) On the linearly and nonlinearly optical for the TiO2/r GO nanocomposite prepared by pulse laser ablation in liquid. J Phys: Conf Ser 1234:012040. https://doi.org/10.1088/1742-6596/1234/1/012040

    Article  CAS  Google Scholar 

  37. Jawad WH, Jader MJ (2021) Preparing and studying the combination of ZnS/ rGO nano composite by laser ablation method. J Phys: Conf Ser 1999:012156. https://doi.org/10.1088/1742-6596/1999/1/012156

    Article  CAS  Google Scholar 

  38. Ali H, Yadav A, Verma N (2021) Facile measurement of cortisol using microchannel embedded Cu-rGO-polymer composite chemiresistive sensor. Chem Eng Process. https://doi.org/10.1016/j.cep.2021.108656

    Article  Google Scholar 

  39. Ma Le, Lan J, Xin L et al (2022) One-step ultrafast laser induced synthesis of strongly coupled 1T–2H MoS2/N-rGO quantum-dot heterostructures for enhanced hydrogen evolution. Chem Eng J 445:136618. https://doi.org/10.1016/j.cej.2022.136618

    Article  CAS  Google Scholar 

  40. Al-Assaly R, Al-Nafiey A (2022) Synthesize rGO-Ag NPs nanocomposite by a simple physical method and applying in water treatment. AIP Conf Proc 2386(1):080030. https://doi.org/10.1063/5.0067431

    Article  CAS  Google Scholar 

  41. Parker CA (1968) Photoluminescence of solutions with applications to photochemistry and analytical chemistry. Elsevier, London

    Google Scholar 

  42. Ibrayev N, Seliverstova E, Kucherenko M (2022) Features of nanosecond transient absorption of Ag nanoparticles with manifestations of electron gas degeneracy. J Lumin 245:118760. https://doi.org/10.1016/j.jlumin.2022.118760

    Article  CAS  Google Scholar 

  43. Seliverstova EV, Ibrayev NKh, Omarova GS, Ishchenko AA, Kucherenko MG (2021) Competitive influence of the plasmon effect and energy transfer between chromophores and Ag nanoparticles on the fluorescent properties of indopolycarbocyanine dyes. J Lumin 235:118000. https://doi.org/10.1016/j.jlumin.2021.118000

    Article  CAS  Google Scholar 

  44. Seliverstova EV, Temirbayeva DA, Ibrayev NKh, Ishchenko AA (2019) Plasmon effect of Ag nanoparticles on Förster resonance energy transfer in the series of cationic polymethine dyes. Theor Exp Chem 55(2):115–124. https://doi.org/10.1007/s11237-019-09602-9

    Article  CAS  Google Scholar 

  45. Ganash EA, Al-Jabarti GA, Altuwirqi RM (2020) The synthesis of carbon-based nanomaterials by pulsed laser ablation in water. Mater Res Express 7:015002. https://doi.org/10.1088/2053-1591/ab572b

    Article  CAS  Google Scholar 

  46. Russo P, Hu A, Compagnini G, Duley WW, Zhou NY (2014) Femtosecond laser ablation of highly oriented pyrolytic graphite: green route for large-scale production of porous graphene and graphene quantum dots. Nanoscale 6(4):2381–2389. https://doi.org/10.1039/C3NR05572H

    Article  CAS  Google Scholar 

  47. Tabish TA, Lin L, Ali M, Jabeen F, Ali M, Iqbal R, Horsell DW, Winyard PG, Zhang S (2018) Investigating the bioavailability of graphene quantum dots in lung tissues via Fourier transform infrared spectroscopy. Interf Focus 8(3):20170054. https://doi.org/10.1098/rsfs.2017.0054

    Article  Google Scholar 

  48. Kong W, Wang W, Wang L, Li Y, Li Y, Xue W (2019) Investigation of photoluminescence behavior of reduced graphene quantum dots. Inorg Chem Commun 99:199–205. https://doi.org/10.1016/j.inoche.2018.10.019

    Article  CAS  Google Scholar 

  49. Seliverstova EV, Ibrayev NK, Dzhanabekova RK (2017) Effect of the conditions of transfer on the structure and optical properties of Langmuir graphene oxide films during deposition on a substrate. Russ J Phys Chem 91:1761–1765. https://doi.org/10.1134/S003602441709028X

    Article  CAS  Google Scholar 

  50. Li M, Cushing SK, Zhou X, Guo S, Wu N (2012) Fingerprinting photoluminescence of functional groups in graphene oxide. J Mater Chem 22(44):23374–23379. https://doi.org/10.1039/C2JM35417A

    Article  CAS  Google Scholar 

  51. Zhang S, Li Y, Kang Y et al (2016) Leaky graphene oxide with high quantum yield and dual-wavelength photoluminescence. Carbon 108:461–470. https://doi.org/10.1016/j.carbon.2016.07.046

    Article  CAS  Google Scholar 

  52. Pratik R, Po-Chung Ch, Arun Prakash P et al (2015) Photoluminescent carbon nanodots: synthesis, physicochemical properties and analytical applications. Mater Today 18(8):447–458. https://doi.org/10.1016/j.mattod.2015.04.005

    Article  CAS  Google Scholar 

  53. Jang M, Yang H, Chang YH et al (2017) Selective engineering of oxygen-containing functional groups using the alkyl ligand oleylamine for revealing the luminescence mechanism of graphene oxide quantum dots. Nanoscale 9:18635–18643. https://doi.org/10.1039/C7NR04150K

    Article  CAS  Google Scholar 

  54. Park M, Kim HS, Yoon H, Kim J, Lee S, Yoo S, Jeon S (2020) Controllable singlet–triplet energy splitting of graphene quantum dots through oxidation: from phosphorescence to TADF. Adv Mater 32(31):2000936. https://doi.org/10.1002/adma.202000936

    Article  CAS  Google Scholar 

  55. Zhu J, Bai X, Chen X, Shao H, Zhai Y, Pan G, Rogach AL (2019) Spectrally tunable solid state fluorescence and room temperature phosphorescence of carbon dots synthesized via seeded growth method. Adv Optical Mater 7(9):1801599. https://doi.org/10.1002/adom.201801599

    Article  CAS  Google Scholar 

  56. Mueller ML, Yan X, McGuire JA, Li L (2010) Triplet states and electronic relaxation in photoexcited graphene quantum dots. Nano Lett 10(7):2679–2682. https://doi.org/10.1021/nl101474d

    Article  CAS  Google Scholar 

  57. McClure DS (1952) Spin-orbit interaction in aromatic molecules. J Chem Phys 20:682. https://doi.org/10.1063/1.1700516

    Article  CAS  Google Scholar 

  58. Lower S, El-Sayed M (1966) The triplet state and molecular electronic processes in organic molecules. Chem Rev 66(2):199–241. https://doi.org/10.1021/acsomega.1c06390

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was carried out as part of the research project AP08052672, funded by the Ministry of Education and Science of the Republic of Kazakhstan.

Funding

Ministry of Education and Science of the Republic of Kazakhstan, AP08052672.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeniya Seliverstova.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seliverstova, E., Ibrayev, N., Alikhaidarova, E. et al. Optical properties of reduced graphene oxide nanodots prepared by laser ablation. Carbon Lett. 32, 1567–1576 (2022). https://doi.org/10.1007/s42823-022-00377-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-022-00377-z

Keywords

Navigation