Skip to main content
Log in

Recent advances on the enhanced thermal conductivity of graphene nanoplatelets composites: a short review

  • Review
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Graphene nanoplatelets (GNPs) have garnered significant attention in the field of thermal management materials due to their unique morphology and remarkable thermal conductive properties. Their impressive thermal properties make them an interesting choice of nanofillers with which to produce multifunctional composite materials and a host of other applications whilst their structural and thermal properties significantly improve their target materials or composites. Therefore, this present study reviewed recent advances in the use of GNPs as nanofillers to enhance the thermal conductivity of various materials or composites. The improved thermal conductivity that GNPs impart in composites is also comprehensively compared and discussed. Therefore, this review may reveal hitherto unknown opportunities and pave the way for the production of materials with enhanced thermal applications including electronics, aerospace devices, batteries, and structural reinforcement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kong W, Kum H, Bae SH et al (2019) Path towards graphene commercialization from lab to market. Nat Nanotechnol 14:927–938. https://doi.org/10.1038/s41565-019-0555-2

    Article  CAS  Google Scholar 

  2. Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field in atomically thin carbon films. Science 306:666–669. https://doi.org/10.1126/science.1102896

    Article  CAS  Google Scholar 

  3. Danial WH, Chutia A, Majid ZA, et al (2015) Electrochemical synthesis and characterization of stable colloidal suspension of graphene using two-electrode cell system. In: AIP Conference Proceedings. p 020020

  4. Danial WH, Norhisham NA, Ahmad Noorden AF et al (2021) A short review on electrochemical exfoliation of graphene and graphene quantum dots. Carbon Lett 31:371–388. https://doi.org/10.1007/s42823-020-00212-3

    Article  Google Scholar 

  5. Tiwari SK, Sahoo S, Wang N, Huczko A (2020) Graphene research and their outputs: Status and prospect. J Sci Adv Mater Devices 5:10–29. https://doi.org/10.1016/j.jsamd.2020.01.006

    Article  Google Scholar 

  6. Prabhu SA, Kavithayeni V, Suganthy R, Geetha K (2021) Graphene quantum dots synthesis and energy application: a review. Carbon Lett 31:1–12. https://doi.org/10.1007/s42823-020-00154-w

    Article  Google Scholar 

  7. Osman SH, Kamarudin SK, Karim NA, Basri S (2021) Application of graphene in low-temperature fuel cell technology: an overview. Int J Energy Res 45:18318–18336. https://doi.org/10.1002/er.6969

    Article  CAS  Google Scholar 

  8. Ali S, Ahmad F, Yusoff PSMM et al (2021) A review of graphene reinforced Cu matrix composites for thermal management of smart electronics. Compos Part A Appl Sci Manuf 144:106357. https://doi.org/10.1016/j.compositesa.2021.106357

    Article  CAS  Google Scholar 

  9. Kumar A, Sharma K, Dixit AR (2021) A review on the mechanical properties of polymer composites reinforced by carbon nanotubes and graphene. Carbon Lett 31:149–165. https://doi.org/10.1007/s42823-020-00161-x

    Article  Google Scholar 

  10. Öztürk A, Bayrakçeken Yurtcan A (2021) Raw and pyrolyzed (with and without melamine) graphene nanoplatelets with different surface areas as PEM fuel cell catalyst supports. Carbon Lett 31:1191–1214. https://doi.org/10.1007/s42823-021-00243-4

    Article  Google Scholar 

  11. Gnidakouong JRN, Gao X, Kafy A et al (2019) Fabrication and electrical properties of regenerated cellulose-loaded exfoliated graphene nanoplatelet composites. Carbon Lett 29:115–122. https://doi.org/10.1007/s42823-019-00003-5

    Article  Google Scholar 

  12. Chinkanjanarot S, Tomasi JM, King JA, Odegard GM (2018) Thermal conductivity of graphene nanoplatelet/cycloaliphatic epoxy composites: multiscale modeling. Carbon N Y 140:653–663. https://doi.org/10.1016/j.carbon.2018.09.024

    Article  CAS  Google Scholar 

  13. Shaari N, Kamarudin SK, Bahru R (2021) Carbon and graphene quantum dots in fuel cell application: an overview. Int J Energy Res 45:1396–1424. https://doi.org/10.1002/er.5889

    Article  CAS  Google Scholar 

  14. Maddah HA (2016) Polypropylene as a promising plastic: a review. Am J Polym Sci 6:1–11. https://doi.org/10.5923/j.ajps.20160601.01

    Article  CAS  Google Scholar 

  15. Vakili MH, Ebadi-Dehaghani H, Haghshenas-Fard M (2011) Crystallization and thermal conductivity of CaCO 3 nanoparticle filled polypropylene. J Macromol Sci Part B Phys 50:1637–1645. https://doi.org/10.1080/00222348.2010.543033

    Article  Google Scholar 

  16. Al IK, Lou J, Shivakumar KN (2018) Enhancement of electrical and thermal conductivity of polypropylene by graphene nanoplatelets. J Appl Polym Sci 135:45833. https://doi.org/10.1002/app.45833

    Article  CAS  Google Scholar 

  17. King JA, Gaxiola DL, Johnson BA, Keith JM (2010) Thermal conductivity of carbon-filled polypropylene-based resins. J Compos Mater 44:839–855. https://doi.org/10.1177/0021998309347578

    Article  CAS  Google Scholar 

  18. Medellín-Banda DI, Navarro-Rodríguez D, Fernández-Tavizón S et al (2019) Enhancement of the thermal conductivity of polypropylene with low loadings of CuAg alloy nanoparticles and graphene nanoplatelets. Mater Today Commun 21:100695. https://doi.org/10.1016/j.mtcomm.2019.100695

    Article  CAS  Google Scholar 

  19. Li A, Zhang C, Zhang YF (2017) Thermal conductivity of graphene-polymer composites: mechanisms, properties, and applications. Polymers (Basel) 9:437. https://doi.org/10.3390/polym9090437

    Article  CAS  Google Scholar 

  20. Wieme T, Duan L, Mys N et al (2019) Effect of matrix and graphite filler on thermal conductivity of industrially feasible injection molded thermoplastic composites. Polymers (Basel) 11:87. https://doi.org/10.3390/polym11010087

    Article  CAS  Google Scholar 

  21. Song N, Cao D, Luo X et al (2020) Highly thermally conductive polypropylene/graphene composites for thermal management. Compos Part A Appl Sci Manuf 135:105912. https://doi.org/10.1016/j.compositesa.2020.105912

    Article  CAS  Google Scholar 

  22. Zhang Y, Heo YJ, Son YR et al (2019) Recent advanced thermal interfacial materials: a review of conducting mechanisms and parameters of carbon materials. Carbon N Y 142:445–460. https://doi.org/10.1016/j.carbon.2018.10.077

    Article  CAS  Google Scholar 

  23. Tsekmes IA, Kochetov R, Morshuis PHF, Smit JJ (2013) Thermal conductivity of polymeric composites: A review. In: Proceedings of IEEE International Conference on Solid Dielectrics, ICSD. IEEE, pp 678–681

  24. Prasher R (2006) Thermal interface materials: historical perspective, status, and future directions. Proc IEEE 94:1571–1586. https://doi.org/10.1109/JPROC.2006.879796

    Article  CAS  Google Scholar 

  25. Wang Z, Qi R, Wang J, Qi S (2015) Thermal conductivity improvement of epoxy composite filled with expanded graphite. Ceram Int 41:13541–13546. https://doi.org/10.1016/j.ceramint.2015.07.148

    Article  CAS  Google Scholar 

  26. Han Z, Fina A (2011) Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog Polym Sci 36:914–944. https://doi.org/10.1016/j.progpolymsci.2010.11.004

    Article  CAS  Google Scholar 

  27. Depaifve S, Hermans S, Ruch D, Laachachi A (2020) Combination of micro-computed X-ray tomography and electronic microscopy to understand the influence of graphene nanoplatelets on the thermal conductivity of epoxy composites. Thermochim Acta 691:178712. https://doi.org/10.1016/j.tca.2020.178712

    Article  CAS  Google Scholar 

  28. Alawar A, Bosze EJ, Nutt SR (2005) A composite core conductor for low sag at high temperatures. IEEE Trans Power Deliv 20:2193–2199. https://doi.org/10.1109/TPWRD.2005.848736

    Article  Google Scholar 

  29. Hadden CM, Klimek-Mcdonald DR, Pineda EJ et al (2015) Mechanical properties of graphene nanoplatelet/carbon fiber/epoxy hybrid composites: multiscale modeling and experiments. Carbon N Y 95:100–112. https://doi.org/10.1016/j.carbon.2015.08.026

    Article  CAS  Google Scholar 

  30. Zha JW, Zhu TX, Wu YH et al (2015) Tuning of thermal and dielectric properties for epoxy composites filled with electrospun alumina fibers and graphene nanoplatelets through hybridization. J Mater Chem C 3:7195–7202. https://doi.org/10.1039/c5tc01552a

    Article  CAS  Google Scholar 

  31. Chinkanjanarot S, Radue MS, Gowtham S et al (2018) Multiscale thermal modeling of cured cycloaliphatic epoxy/carbon fiber composites. J Appl Polym Sci 135:46371. https://doi.org/10.1002/app.46371

    Article  CAS  Google Scholar 

  32. Barlev D, Vidu R, Stroeve P (2011) Innovation in concentrated solar power. Sol Energy Mater Sol Cells 95:2703–2725. https://doi.org/10.1016/j.solmat.2011.05.020

    Article  CAS  Google Scholar 

  33. Muchuweni E, Martincigh BS, Nyamori VO (2021) Organic solar cells: Current perspectives on graphene-based materials for electrodes, electron acceptors and interfacial layers. Int J Energy Res 45:6518–6549. https://doi.org/10.1002/er.6301

    Article  CAS  Google Scholar 

  34. Ngidi NPD, Ollengo MA, Nyamori VO (2019) Heteroatom-doped graphene and its application as a counter electrode in dye-sensitized solar cells. Int J Energy Res 43:1702–1734. https://doi.org/10.1002/er.4326

    Article  CAS  Google Scholar 

  35. Granqvist CG (2007) Transparent conductors as solar energy materials: a panoramic review. Sol Energy Mater Sol Cells 91:1529–1598. https://doi.org/10.1016/j.solmat.2007.04.031

    Article  CAS  Google Scholar 

  36. Yang J, Qi GQ, Liu Y et al (2016) Hybrid graphene aerogels/phase change material composites: thermal conductivity, shape-stabilization and light-to-thermal energy storage. Carbon N Y 100:693–702. https://doi.org/10.1016/j.carbon.2016.01.063

    Article  CAS  Google Scholar 

  37. Amin M, Putra N, Kosasih EA et al (2017) Thermal properties of beeswax/graphene phase change material as energy storage for building applications. Appl Therm Eng 112:273–280. https://doi.org/10.1016/j.applthermaleng.2016.10.085

    Article  CAS  Google Scholar 

  38. Sivanathan A, Dou Q, Wang Y et al (2020) Phase change materials for building construction: an overview of nano-/micro-encapsulation. Nanotechnol Rev 9:896–921. https://doi.org/10.1515/ntrev-2020-0067

    Article  Google Scholar 

  39. Lin Y, Cong R, Chen Y, Fang G (2020) Thermal properties and characterization of palmitic acid/nano silicon dioxide/graphene nanoplatelet for thermal energy storage. Int J Energy Res 44:5621–5633. https://doi.org/10.1002/er.5311

    Article  CAS  Google Scholar 

  40. Zhang N, Jing Y, Song Y et al (2020) Thermal properties and crystallization kinetics of pentaglycerine/graphene nanoplatelets composite phase change material for thermal energy storage. Int J Energy Res 44:448–459. https://doi.org/10.1002/er.4946

    Article  CAS  Google Scholar 

  41. He L, Li J, Zhou C et al (2014) Phase change characteristics of shape-stabilized PEG/SiO2 composites using calcium chloride-assisted and temperature-assisted sol gel methods. Sol Energy 103:448–455. https://doi.org/10.1016/j.solener.2014.02.042

    Article  CAS  Google Scholar 

  42. Tang Y, Jia Y, Alva G et al (2016) Synthesis, characterization and properties of palmitic acid/high density polyethylene/graphene nanoplatelets composites as form-stable phase change materials. Sol Energy Mater Sol Cells 155:421–429. https://doi.org/10.1016/j.solmat.2016.06.049

    Article  CAS  Google Scholar 

  43. He L, Wang H, Zhu H et al (2018) Thermal properties of PEG/graphene nanoplatelets (GNPs) composite phase change materials with enhanced thermal conductivity and photo-thermal performance. Appl Sci 8:2613. https://doi.org/10.3390/app8122613

    Article  CAS  Google Scholar 

  44. Hu K, Kulkarni DD, Choi I, Tsukruk VV (2014) Graphene-polymer nanocomposites for structural and functional applications. Prog Polym Sci 39:1934–1972. https://doi.org/10.1016/j.progpolymsci.2014.03.001

    Article  CAS  Google Scholar 

  45. Liu Y, Wu K, Luo F et al (2019) Significantly enhanced thermal conductivity in polyvinyl alcohol composites enabled by dopamine modified graphene nanoplatelets. Compos Part A Appl Sci Manuf 117:134–143. https://doi.org/10.1016/j.compositesa.2018.11.015

    Article  CAS  Google Scholar 

  46. Tarannum F, Muthaiah R, Annam RS et al (2020) Effect of alignment on enhancement of thermal conductivity of polyethylene–graphene nanocomposites and comparison with effective medium theory. Nanomaterials 10:1–12. https://doi.org/10.3390/nano10071291

    Article  CAS  Google Scholar 

  47. Usman C, Mabrouk A, Abdala A (2021) Enhanced thermal conductivity of polyethylene nanocomposites with graphene, granulated graphene, graphene nanoplatelet, and their hybrids. Int J Energy Res. https://doi.org/10.1002/er.7147

    Article  Google Scholar 

  48. Paszkiewicz S, Szymczyk A, Pawlikowska D et al (2018) Electrically and thermally conductive low density polyethylene-based nanocomposites reinforced by MWCNT or hybrid MWCNT/graphene nanoplatelets with improved thermo-oxidative stability. Nanomaterials 8:264. https://doi.org/10.3390/nano8040264

    Article  CAS  Google Scholar 

  49. Hashim H, Adam NI, Zaki NHM, et al (2010) Natural rubber-grafted with 30% poly(methylmethacrylate) characterization for application in lithium polymer battery. In: CSSR 2010–2010 International Conference on Science and Social Research. IEEE, pp 485–488

  50. Yang W, Rallini M, Wang DY et al (2018) Role of lignin nanoparticles in UV resistance, thermal and mechanical performance of PMMA nanocomposites prepared by a combined free-radical graft polymerization/masterbatch procedure. Compos Part A Appl Sci Manuf 107:61–69. https://doi.org/10.1016/j.compositesa.2017.12.030

    Article  CAS  Google Scholar 

  51. Yang B, Pan Y, Yu Y et al (2020) Filler network structure in graphene nanoplatelet (GNP)-filled polymethyl methacrylate (PMMA) composites: From thermorheology to electrically and thermally conductive properties. Polym Test 89:106575. https://doi.org/10.1016/j.polymertesting.2020.106575

    Article  CAS  Google Scholar 

  52. Yang SY, Ma CCM, Teng CC et al (2010) Effect of functionalized carbon nanotubes on the thermal conductivity of epoxy composites. Carbon N Y 48:592–603. https://doi.org/10.1016/j.carbon.2009.08.047

    Article  CAS  Google Scholar 

  53. Pan Y, Yang B, Jia N et al (2021) Enhanced thermally conductive and thermomechanical properties of polymethyl methacrylate (PMMA)/graphene nanoplatelets (GNPs) nanocomposites for radiator of electronic components. Polym Test 101:107237. https://doi.org/10.1016/j.polymertesting.2021.107237

    Article  CAS  Google Scholar 

  54. Mirjalili V, Ramachandramoorthy R, Hubert P (2014) Enhancement of fracture toughness of carbon fiber laminated composites using multi wall carbon nanotubes. Carbon N Y 79:413–423. https://doi.org/10.1016/j.carbon.2014.07.084

    Article  CAS  Google Scholar 

  55. Kandare E, Khatibi AA, Yoo S et al (2015) Improving the through-thickness thermal and electrical conductivity of carbon fibre/epoxy laminates by exploiting synergy between graphene and silver nano-inclusions. Compos Part A Appl Sci Manuf 69:72–82. https://doi.org/10.1016/j.compositesa.2014.10.024

    Article  CAS  Google Scholar 

  56. Wang F, Cai X (2019) Improvement of mechanical properties and thermal conductivity of carbon fiber laminated composites through depositing graphene nanoplatelets on fibers. J Mater Sci 54:3847–3862. https://doi.org/10.1007/s10853-018-3097-3

    Article  CAS  Google Scholar 

  57. Martins M, Gomes R, Pina L et al (2018) Highly conductive carbon fiber-reinforced polymer composite electronic box: out-of-autoclave manufacturing for space applications. Fibers 6:92. https://doi.org/10.3390/fib6040092

    Article  CAS  Google Scholar 

  58. Wang S, Han S, Xin G et al (2018) High-quality graphene directly grown on Cu nanoparticles for Cu-graphene nanocomposites. Mater Des 139:181–187. https://doi.org/10.1016/j.matdes.2017.11.010

    Article  CAS  Google Scholar 

  59. Fang B, Li J, Zhao N et al (2017) Boron doping effect on the interface interaction and mechanical properties of graphene reinforced copper matrix composite. Appl Surf Sci 425:811–822. https://doi.org/10.1016/j.apsusc.2017.07.084

    Article  CAS  Google Scholar 

  60. Chen X, Tao J, Yi J et al (2018) Strengthening behavior of carbon nanotube-graphene hybrids in copper matrix composites. Mater Sci Eng A 718:427–436. https://doi.org/10.1016/j.msea.2018.02.006

    Article  CAS  Google Scholar 

  61. Guo S, Zhang X, Shi C et al (2020) In situ synthesis of high content graphene nanoplatelets reinforced Cu matrix composites with enhanced thermal conductivity and tensile strength. Powder Technol 362:126–134. https://doi.org/10.1016/j.powtec.2019.11.121

    Article  CAS  Google Scholar 

  62. Chu K, Wang X-h, Wang F et al (2018) Largely enhanced thermal conductivity of graphene/copper composites with highly aligned graphene network. Carbon N Y 127:102–112. https://doi.org/10.1016/j.carbon.2017.10.099

    Article  CAS  Google Scholar 

  63. Yan Z, Nika DL, Balandin AA (2015) Thermal properties of graphene and few-layer graphene: applications in electronics. IET Circuits, Devices Syst 9:4–12. https://doi.org/10.1049/iet-cds.2014.0093

    Article  Google Scholar 

  64. Bahru R, Zamri MFMA, Shamsuddin AH et al (2021) A review of thermal interface material fabrication method toward enhancing heat dissipation. Int J Energy Res 45:3548–3568. https://doi.org/10.1002/er.6078

    Article  Google Scholar 

  65. Lv J, Cai X, Ye Q et al (2018) Significant improvement in the interface thermal conductivity of graphene-nanoplatelets/silicone composite. Mater Res Express 5:055606. https://doi.org/10.1088/2053-1591/aac46e

    Article  CAS  Google Scholar 

  66. Chen JK, Huang IS (2013) Thermal properties of aluminum-graphite composites by powder metallurgy. Compos Part B Eng 44:698–703. https://doi.org/10.1016/j.compositesb.2012.01.083

    Article  CAS  Google Scholar 

  67. Zhou W, Bang S, Kurita H et al (2016) Interface and interfacial reactions in multi-walled carbon nanotube-reinforced aluminum matrix composites. Carbon N Y 96:919–928. https://doi.org/10.1016/j.carbon.2015.10.016

    Article  CAS  Google Scholar 

  68. Wang J, Li Z, Fan G et al (2012) Reinforcement with graphene nanosheets in aluminum matrix composites. Scr Mater 66:594–597. https://doi.org/10.1016/j.scriptamat.2012.01.012

    Article  CAS  Google Scholar 

  69. Wang C, Su Y, Ouyang Q, Zhang D (2020) Enhanced through-plane thermal conductivity and mechanical properties of vertically aligned graphene nanoplatelet@graphite flakes reinforced aluminum composites. Diam Relat Mater 108:107929. https://doi.org/10.1016/j.diamond.2020.107929

    Article  CAS  Google Scholar 

  70. Wu F, Chen A, Pan H et al (2021) Synergistic enhancement of thermal conductivity by addition of graphene nanoplatelets to three-dimensional boron nitride scaffolds for polyamide 6 composites. Polym Eng Sci 61:1415–1426. https://doi.org/10.1002/pen.25658

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the International Islamic University Malaysia and financial support through the Fundamental Research Grant Scheme (FRGS19-015-0623), Ministry of Higher Education (MOHE), Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan Hazman Danial.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danial, W.H., Abdul Majid, Z. Recent advances on the enhanced thermal conductivity of graphene nanoplatelets composites: a short review. Carbon Lett. 32, 1411–1424 (2022). https://doi.org/10.1007/s42823-022-00371-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-022-00371-5

Keywords

Navigation