Skip to main content
Log in

Raw and pyrolyzed (with and without melamine) graphene nanoplatelets with different surface areas as PEM fuel cell catalyst supports

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Platinum (Pt) catalysts dispersed on carbon-based support materials are generally used in the polymer electrolyte membrane (PEM) fuel cells. In this study, commercial graphene nanoplatelets (GNPs), with different surface areas (320, 530, 800 m2 g−1), were used as catalyst supports in PEM fuel cells. These GNPs were also pyrolyzed under the inert atmosphere, with and without melamine, as the nitrogen (N) source. Various characterizations (Elemental analysis, FTIR, Raman spectroscopy, BET, TEM, HRTEM, SAED, XRD, TGA, ICP-MS, contact angle measurement, CV, ORR, chronoamperometry, EIS, PEM fuel cell performance test) were performed for the detailed analysis of Pt/GNPs. Based on the three-electrode cell system, the lowest electrochemical surface area (ECSA) loss (29.9%), Pt mass activity loss (20.3%) and overall (charge and mass) resistance (42.2 Ω) were obtained with the Pt/M-530 catalyst. According to the in-situ PEM fuel cell performance results, the specific peak power density was recorded as (450 mW mg Pt−1) for the Pt/R-530 catalyst, which has also the second most hydrophobic catalyst layer surface with the 146.5° ± 1.28° contact angle value. On the heels of Pt/R-530, the two best performances also belong to the Pt/M-530 (391 mW mg Pt−1) and Pt/P-530 (378 mW mg Pt−1) catalysts of the same group.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hussain MM, Baschuk JJ, Li X, Dincer I (2005) Thermodynamic analysis of a PEM fuel cell power system. Int J Therm Sci 44:903–911. https://doi.org/10.1016/j.ijthermalsci.2005.02.009

    Article  CAS  Google Scholar 

  2. Özgür T, Yakaryılmaz AC (2018) A review: exergy analysis of PEM and PEM fuel cell based CHP systems. Int J Hydrogen Energy 43:17993–18000. https://doi.org/10.1016/j.ijhydene.2018.01.106

    Article  CAS  Google Scholar 

  3. Ozden E, Tari I (2017) PEM fuel cell degradation effects on the performance of a stand-alone solar energy system. Int J Hydrogen Energy 42:13217–13225. https://doi.org/10.1016/j.ijhydene.2017.04.017

    Article  CAS  Google Scholar 

  4. Park S, Shao Y, Wan H, Rieke PC, Viswanathan VV, Towne SA, Saraf LV, Liu J, Lin Y, Wang Y (2011) Design of graphene sheets-supported Pt catalyst layer in PEM fuel cells. Electrochem Commun 13:258–261. https://doi.org/10.1016/j.elecom.2010.12.028

    Article  CAS  Google Scholar 

  5. Marinkas A, Arena F, Mitzel J, Prinz GM, Heinzel A, Peinecke V, Natter H (2013) Graphene as catalyst support: the influences of carbon additives and catalyst preparation methods on the performance of PEM fuel cells. Carbon 58:139–150. https://doi.org/10.1016/j.carbon.2013.02.043

    Article  CAS  Google Scholar 

  6. Yarar Kaplan B, Haghmoradi N, Biçer E, Merino C, Alkan Gürsel S (2018) High performance electrocatalysts supported on graphene based hybrids for polymer electrolyte membrane fuel cells. Int J Hydrogen Energy 43:23221–23230. https://doi.org/10.1016/j.ijhydene.2018.10.222

    Article  CAS  Google Scholar 

  7. Lei M, Liang C, Wang YJ, Huang K, Ye CX, Liu G, Wang WJ, Jin SF, Zhang R, Fan DY, Yang HJ, Wang YG (2013) Durable platinum/graphene catalysts assisted with polydiallyldimethylammonium for proton-exchange membrane fuel cells. Electrochim Acta 113:366–372. https://doi.org/10.1016/j.electacta.2013.09.119

    Article  CAS  Google Scholar 

  8. Öner E, Öztürk A, Bayrakçeken Yurtcan A (2020) Utilization of the graphene aerogel as PEM fuel cell catalyst support: effect of polypyrrole (PPy) and polydimethylsiloxane (PDMS) addition. Int J Hydrogen Energy 45:34818–34836. https://doi.org/10.1016/j.ijhydene.2020.05.053

    Article  CAS  Google Scholar 

  9. Çögenli MS, Bayrakçeken Yurtcan A (2018) Graphene aerogel supported platinum nanoparticles for formic acid electro-oxidation. Mater Res Express 5:075513. https://doi.org/10.1088/2053-1591/aad0e8

    Article  CAS  Google Scholar 

  10. Daş E, Alkan Gürsel S, Bayrakçeken Yurtcan A (2020) Pt-alloy decorated graphene as an efficient electrocatalyst for PEM fuel cell reactions. J Supercrit Fluids 165:104962. https://doi.org/10.1016/j.supflu.2020.104962

    Article  CAS  Google Scholar 

  11. Daş E, Alkan Gürsel S, Işikel Şanli L, Bayrakçeken Yurtcan A (2016) Comparison of two different catalyst preparation methods for graphene nanoplatelets supported platinum catalysts. Int J Hydrogen Energy 41:9755–9761. https://doi.org/10.1016/j.ijhydene.2016.01.111

    Article  CAS  Google Scholar 

  12. Cho SH, Yang HN, Lee DC, Park SH, Kim WJ (2013) Electrochemical properties of Pt/graphene intercalated by carbon black and its application in polymer electrolyte membrane fuel cell. J Power Sources 225:200–206. https://doi.org/10.1016/j.jpowsour.2012.10.040

    Article  CAS  Google Scholar 

  13. Öztürk A, Özçelik N, Bayrakçeken Yurtcan A (2021) Platinum/graphene nanoplatelets/silicone rubber composites as polymer electrolyte membrane fuel cell catalysts. Mater Chem Phys 260:124110. https://doi.org/10.1016/j.matchemphys.2020.124110

    Article  CAS  Google Scholar 

  14. Levy N, Lori O, Gonen S, Mizrahi M, Ruthstein S, Elbaz L (2020) The relationship of morphology and catalytic activity: a case study of iron corrole incorporated in high surface area carbon supports. Carbon 158:238–243. https://doi.org/10.1016/j.carbon.2019.12.012

    Article  CAS  Google Scholar 

  15. Öztürk A, Bayrakçeken Yurtcan A (2018) Synthesis of polypyrrole (PPy) based porous N-doped carbon nanotubes (N-CNTs) as catalyst support for PEM fuel cells. Int J Hydrogen Energy 43:18559–18571. https://doi.org/10.1016/j.ijhydene.2018.05.106

    Article  CAS  Google Scholar 

  16. Heydari A, Gharibi H (2016) Fabrication of electrocatalyst based on nitrogen doped graphene as highly efficient and durable support for using in polymer electrolyte fuel cell. J Power Sources 325:808–815. https://doi.org/10.1016/j.jpowsour.2016.06.039

    Article  CAS  Google Scholar 

  17. Geng D, Hu Y, Li Y, Li R, Sun X (2012) One-pot solvothermal synthesis of doped graphene with the designed nitrogen type used as a Pt support for fuel cells. Electrochem Commun 22:65–68. https://doi.org/10.1016/j.elecom.2012.05.033

    Article  CAS  Google Scholar 

  18. Ghanbarlou H, Rowshanzamir S, Parnian MJ, Mehri F (2016) Comparison of nitrogen-doped graphene and carbon nanotubes as supporting material for iron and cobalt nanoparticle electrocatalysts toward oxygen reduction reaction in alkaline media for fuel cell applications. Int J Hydrogen Energy 41:14665–14675. https://doi.org/10.1016/j.ijhydene.2016.06.005

    Article  CAS  Google Scholar 

  19. Li Y, Zhu X, Chen Y, Zhang S, Li J, Liu J (2020) Rapid synthesis of highly active Pt/C catalysts with various metal loadings from single batch platinum colloid. J Energy Chem 47:138–145. https://doi.org/10.1016/j.jechem.2019.12.004

    Article  Google Scholar 

  20. Martins M, Milikić J, Šljukić B, Soylu GSP, Bayrakçeken Yurtcan A, Bozkurt G, Santos DMF (2019) Mn2O3-MO (MO = ZrO2, V2O5, WO3) supported PtNi nanoparticles: designing stable and efficient electrocatalysts for oxygen reduction and borohydride oxidation. Microporous Mesoporous Mater 273:286–293. https://doi.org/10.1016/j.micromeso.2018.07.022

    Article  CAS  Google Scholar 

  21. Maass S, Finsterwalder F, Frank G, Hartmann R, Merten C (2008) Carbon support oxidation in PEM fuel cell cathodes. J Power Sources 176:444–451. https://doi.org/10.1016/j.jpowsour.2007.08.053

    Article  CAS  Google Scholar 

  22. Sun Q, Kim S (2015) Synthesis of nitrogen-doped graphene supported Pt nanoparticles catalysts and their catalytic activity for fuel cells. Electrochim Acta 153:566–573. https://doi.org/10.1016/j.electacta.2014.11.077

    Article  CAS  Google Scholar 

  23. Sibul R, Kibena-Põldsepp E, Mäeorg U, Merisalu M, Kikas A, Kisand V, Treshchalov A, Sammelselg V, Tammeveski K (2019) Sulphur and nitrogen co-doped graphene-based electrocatalysts for oxygen reduction reaction in alkaline medium. Electrochem Commun 109:106603. https://doi.org/10.1016/j.elecom.2019.106603

    Article  CAS  Google Scholar 

  24. Khasim S (2019) Polyaniline–graphene nanoplatelet composite films with improved conductivity for high performance X-band microwave shielding applications. Results Phys 12:1073–1081. https://doi.org/10.1016/j.rinp.2018.12.087

    Article  Google Scholar 

  25. Romero A, Lavín-López MP, de la Osa AR, Ordoñez S, de Lucas-Consuegra A, Valverde JL, Patón A (2020) Different strategies to simultaneously N-doping and reduce graphene oxide for electrocatalytic applications. J Electroanal Chem 857:113695. https://doi.org/10.1016/j.jelechem.2019.113695

    Article  CAS  Google Scholar 

  26. Ma R, Zhou Y, Li P, Chen Y, Wang J, Liu Q (2016) Self-assembly of nitrogen-doped graphene-wrapped carbon nanoparticles as an efficient electrocatalyst for oxygen reduction reaction. Electrochim Acta 216:347–354. https://doi.org/10.1016/j.electacta.2016.09.027

    Article  CAS  Google Scholar 

  27. Lee MS, Choi HJ, Baek JB, Chang DW (2017) Simple solution-based synthesis of pyridinic-rich nitrogen-doped graphene nanoplatelets for supercapacitors. Appl Energy 195:1071–1078. https://doi.org/10.1016/j.apenergy.2016.07.107

    Article  CAS  Google Scholar 

  28. Karuppanan KK, Raghu AV, Panthalingal MK, Thiruvenkatam V, Karthikeyan P, Pullithadathil B (2019) 3D-porous electrocatalytic foam based on Pt@N-doped graphene for high performance and durable polymer electrolyte membrane fuel cells. Sustain Energy Fuels 3:996–1011. https://doi.org/10.1039/C8SE00552D

    Article  CAS  Google Scholar 

  29. Mirshekari GR, Rice CA (2018) Effects of support particle size and Pt content on catalytic activity and durability of Pt/TiO2 catalyst for oxygen reduction reaction in proton exchange membrane fuel cells environment. J Power Sources 396:606–614. https://doi.org/10.1016/j.jpowsour.2018.06.061

    Article  CAS  Google Scholar 

  30. Karaman C, Bayram E, Karaman O, Aktaş Z (2020) Preparation of high surface area nitrogen doped graphene for the assessment of morphologic properties and nitrogen content impacts on supercapacitors. J Electroanal Chem 868:114197. https://doi.org/10.1016/j.jelechem.2020.114197

    Article  CAS  Google Scholar 

  31. Çelik MK, Öztürk A, Çögenli MS, Bayrakçeken Yurtcan A (2020) Evaluation of low and high surface area TiO(2) and Al(2)O(3) metal oxides-carbon hybrids in terms of polymer electrolyte membrane fuel cell catalyst support. J Nanosci Nanotechnol 20:1189–1208. https://doi.org/10.1166/jnn.2020.16962

    Article  CAS  Google Scholar 

  32. Yurdakal S, Garlisi C, Özcan L, Bellardita M, Palmisano G (2019) (Photo)catalyst characterization techniques: adsorption isotherms and BET, SEM, FTIR, UV–Vis, photoluminescence, and electrochemical characterizations. In: Marcì G, Palmisano L (eds) Heterogeneous photocatalysis: relationships with heterogeneous catalysis and perspectives, 1st edn. Elsevier, New York, pp 87–152

    Chapter  Google Scholar 

  33. Singh A, Roberts AJ, Slade RCT, Chandra A (2014) High electrochemical performance in asymmetric supercapacitors using MWCNT/nickel sulfide composite and graphene nanoplatelets as electrodes. J Mater Chem A 2:16723–16730. https://doi.org/10.1039/C4TA02870H

    Article  CAS  Google Scholar 

  34. Ding JH, Zhao HR, Yu HB (2018) A water-based green approach to large-scale production of aqueous compatible graphene nanoplatelets. Sci Rep 8:5567. https://doi.org/10.1038/s41598-018-23859-5

    Article  CAS  Google Scholar 

  35. Alawi OA, Sidik NAC, Kazi SN, Najafi G (2018) Graphene nanoplatelets and few-layer graphene studies in thermo-physical properties and particle characterization. J Therm Anal Calorim 135:1081–1093. https://doi.org/10.1007/s10973-018-7585-0

    Article  CAS  Google Scholar 

  36. Lin Z, Waller G, Liu Y, Liu M, Wong CP (2012) Facile synthesis of nitrogen-doped graphene via pyrolysis of graphene oxide and urea, and its electrocatalytic activity toward the oxygen-reduction reaction. Adv Energy Mater 2:884–888. https://doi.org/10.1002/aenm.201200038

    Article  CAS  Google Scholar 

  37. Antolini E (2009) Carbon supports for low-temperature fuel cell catalysts. Appl Catal B Environ 88:1–24. https://doi.org/10.1016/j.apcatb.2008.09.030

    Article  CAS  Google Scholar 

  38. Jeon IY, Kweon DH, Kim SW, Shin SH, Im YK, Yu SY, Ju MJ, Baek JB (2017) Enhanced electrocatalytic performance of Pt nanoparticles on triazine-functionalized graphene nanoplatelets for both oxygen and iodine reduction reactions. J Mater Chem A 5:21936–21946. https://doi.org/10.1039/C7TA06912J

    Article  CAS  Google Scholar 

  39. Wu R, Tsiakaras P, Shen PK (2019) Facile synthesis of bimetallic Pt–Pd symmetry-broken concave nanocubes and their enhanced activity toward oxygen reduction reaction. Appl Catal B Environ 251:49–56. https://doi.org/10.1016/j.apcatb.2019.03.045

    Article  CAS  Google Scholar 

  40. Bhattacharya S, Singh SR, Nayar S (2014) Graphene synthesis and functionalization with collagen into an aqueous dispersion showing high photo-luminescence. J Nanofluids 3:8–16. https://doi.org/10.1166/jon.2014.1079

    Article  CAS  Google Scholar 

  41. Jeon IY, Choi HJ, Jung SM, Seo JM, Kim MJ, Dai L, Baek JB (2013) Large-scale production of edge-selectively functionalized graphene nanoplatelets via ball milling and their use as metal-free electrocatalysts for oxygen reduction reaction. J Am Chem Soc 135:1386–1393. https://doi.org/10.1021/ja3091643

    Article  CAS  Google Scholar 

  42. Verma M, Chauhan SS, Dhawan SK, Choudhary V (2017) Graphene nanoplatelets/carbon nanotubes/polyurethane composites as efficient shield against electromagnetic polluting radiations. Compos Part B Eng 120:118–127. https://doi.org/10.1016/j.compositesb.2017.03.068

    Article  CAS  Google Scholar 

  43. Shao Y, Zhang S, Wang C, Nie Z, Liu J, Wang Y, Lin Y (2010) Highly durable graphene nanoplatelets supported Pt nanocatalysts for oxygen reduction. J Power Sources 195:4600–4605. https://doi.org/10.1016/j.jpowsour.2010.02.044

    Article  CAS  Google Scholar 

  44. Argüello JA, Rojo JM, Moreno R (2019) Electrophoretic deposition of manganese oxide and graphene nanoplatelets on graphite paper for the manufacture of supercapacitor electrodes. Electrochim Acta 294:102–109. https://doi.org/10.1016/j.electacta.2018.10.091

    Article  CAS  Google Scholar 

  45. Bozkurt G, Memioğlu F, Bayrakçeken Yurtcan A (2016) Durability of carbon/conducting polymer composite supported Pt catalysts prepared by supercritical carbon dioxide deposition. Turk J Chem 40:117–124. https://doi.org/10.3906/kim-1502-95

    Article  CAS  Google Scholar 

  46. Kim J, Kim C, Jeon IY, Baek JB, Ju YW, Kim G (2018) A new strategy for outstanding performance and durability in acidic fuel cells: a small amount Pt anchored on Fe, N co-doped graphene Nanoplatelets. ChemElectroChem 5:2857–2862. https://doi.org/10.1002/celc.201800674

    Article  CAS  Google Scholar 

  47. Alanyalıoğlu M, Segura JJ, Oró-Solè J, Casañ-Pastor N (2012) The synthesis of graphene sheets with controlled thickness and order using surfactant-assisted electrochemical processes. Carbon 50:142–152. https://doi.org/10.1016/j.carbon.2011.07.064

    Article  CAS  Google Scholar 

  48. Wan H, Hu X (2019) Nitrogen/sulfur co-doped disordered porous biocarbon as high performance anode materials of lithium/sodium ion batteries. Int J Hydrogen Energy 44:22250–22262. https://doi.org/10.1016/j.ijhydene.2019.06.107

    Article  CAS  Google Scholar 

  49. Sharma R, Chadha N, Saini P (2017) Determination of defect density, crystallite size and number of graphene layers in graphene analogues using X-ray diffraction and Raman spectroscopy. Indian J Pure Appl Phys 55:625–629 (Corpus ID: 55290337)

    Google Scholar 

  50. Wang G, Yang J, Park J, Gou X, Wang B, Liu H, Yao J (2008) Facile synthesis and characterization of graphene nanosheets. J Phys Chem C 112:8192–8195. https://doi.org/10.1021/jp710931h

    Article  CAS  Google Scholar 

  51. Shtein M, Pri-Bar I, Varenik M, Regev O (2015) Characterization of graphene-nanoplatelets structure via thermogravimetry. Anal Chem 87:4076–4080. https://doi.org/10.1021/acs.analchem.5b00228

    Article  CAS  Google Scholar 

  52. Daş E, Alkan Gürsel S, Işıkel Şanlı L, Bayrakçeken Yurtcan A (2017) Thermodynamically controlled Pt deposition over graphene nanoplatelets: effect of Pt loading on PEM fuel cell performance. Int J Hydrogen Energy 42:19246–19256. https://doi.org/10.1016/j.ijhydene.2017.06.108

    Article  CAS  Google Scholar 

  53. Öztürk A, Bayrakçeken Yurtcan A (2017) Effect of calcination temperature on hydrophobicity of microporous layers prepared with two different molecular weights of PDMS polymer on PEM fuel cell performance with low Pt loading. Int J Hydrogen Energy 42:6250–6261. https://doi.org/10.1016/j.ijhydene.2016.11.041

    Article  CAS  Google Scholar 

  54. Öztürk A, Bayrakçeken Yurtcan A (2020) Investigation of synergetic effect of PDMS polymer hydrophobicity and polystyrene-silica particles roughness in the content of microporous layer on water management in PEM fuel cell. Appl Surf Sci 511:145415. https://doi.org/10.1016/j.apsusc.2020.145415

    Article  CAS  Google Scholar 

  55. Ungan H, Bayrakçeken Yurtcan A (2020) Water management improvement in PEM fuel cells via addition of PDMS or APTES polymers to the catalyst layer. Turk J Chem 44:1227–1243. https://doi.org/10.3906/kim-2002-49

    Article  CAS  Google Scholar 

  56. Daş E, Kaplan BY, Alkan Gürsel S, Bayrakçeken Yurtcan A (2019) Graphene nanoplatelets-carbon black hybrids as an efficient catalyst support for Pt nanoparticles for polymer electrolyte membrane fuel cells. Renew Energy 139:1099–1110. https://doi.org/10.1016/j.renene.2019.02.137

    Article  CAS  Google Scholar 

  57. Prolongo SG, Moriche R, Jiménez-Suárez A, Sánchez M, Ureña A (2014) Advantages and disadvantages of the addition of graphene nanoplatelets to epoxy resins. Eur Polym J 61:206–214. https://doi.org/10.1016/j.eurpolymj.2014.09.022

    Article  CAS  Google Scholar 

  58. Güvenatam B, Fıçıcılar B, Bayrakçeken A, Eroğlu İ (2012) Hollow core mesoporous shell carbon supported Pt electrocatalysts with high Pt loading for PEMFCs. Int J Hydrogen Energy 37:1865–1874. https://doi.org/10.1016/j.ijhydene.2011.06.129

    Article  CAS  Google Scholar 

  59. Daş E, Bayrakçeken Yurtcan A (2016) Effect of carbon ratio in the polypyrrole/carbon composite catalyst support on PEM fuel cell performance. Int J Hydrogen Energy 41:13171–13179. https://doi.org/10.1016/j.ijhydene.2016.05.167

    Article  CAS  Google Scholar 

  60. Shinozaki K, Zack JW, Richards RM, Pivovar BS, Kocha SS (2015) Oxygen reduction reaction measurements on platinum electrocatalysts utilizing rotating disk electrode technique. J Electrochem Soc 162:F1144–F1158. https://doi.org/10.1149/2.1071509jes

    Article  CAS  Google Scholar 

  61. Boxall C (1999) Kinetic modeling of electron transfer processes in colloidal semiconductor photocatalysis. In: Compton RG, Hancock G (eds) Applications of kinetic modelling, 1st edn. Elsevier, New York, pp 281–368

    Chapter  Google Scholar 

  62. Xin Y, Liu JG, Zhou Y, Liu W, Gao J, Xie Y, Yin Y, Zou Z (2011) Preparation and characterization of Pt supported on graphene with enhanced electrocatalytic activity in fuel cell. J Power Sources 196:1012–1018. https://doi.org/10.1016/j.jpowsour.2010.08.051

    Article  CAS  Google Scholar 

  63. Jiang R, Tran DT, McClure J, Chu D (2012) Heat-treated hemin supported on graphene nanoplatelets for the oxygen reduction reaction. Electrochem Commun 19:73–76. https://doi.org/10.1016/j.elecom.2012.03.013

    Article  CAS  Google Scholar 

  64. Garsany Y, Baturina OA, Swider-Lyons KE, Kocha SS (2010) Experimental methods for quantifying the activity of platinum electrocatalysts for the oxygen reduction reaction. Anal Chem 82:6321–6328. https://doi.org/10.1021/ac100306c

    Article  CAS  Google Scholar 

  65. Tang Z, Huang QA, Wang YJ, Zhang F, Li W, Li A, Zhang L, Zhang J (2020) Recent progress in the use of electrochemical impedance spectroscopy for the measurement, monitoring, diagnosis and optimization of proton exchange membrane fuel cell performance. J Power Sources 468:228361. https://doi.org/10.1016/j.jpowsour.2020.228361

    Article  CAS  Google Scholar 

  66. Mamlouk M, Scott K (2011) Analysis of high temperature polymer electrolyte membrane fuel cell electrodes using electrochemical impedance spectroscopy. Electrochim Acta 56:5493–5512. https://doi.org/10.1016/j.electacta.2011.03.056

    Article  CAS  Google Scholar 

  67. Virkar AV, Chen J, Tanner CW, Kim JW (2000) The role of electrode microstructure on activation and concentration polarizations in solid oxide fuel cells. Solid State Ion 131:189–198. https://doi.org/10.1016/S0167-2738(00)00633-0

    Article  CAS  Google Scholar 

  68. Arici E, Yarar Kaplan B, Mert AM, Alkan Gursel S, Kinayyigit S (2019) An effective electrocatalyst based on platinum nanoparticles supported with graphene nanoplatelets and carbon black hybrid for PEM fuel cells. Int J Hydrogen Energy 44:14175–14183. https://doi.org/10.1016/j.ijhydene.2018.11.210

    Article  CAS  Google Scholar 

  69. Işıkel Şanlı L, Bayram V, Yarar B, Ghobadi S, Alkan Gürsel S (2016) Development of graphene supported platinum nanoparticles for polymer electrolyte membrane fuel cells: Effect of support type and impregnation–reduction methods. Int J Hydrogen Energy 41:3414–3427. https://doi.org/10.1016/j.ijhydene.2015.12.166

    Article  CAS  Google Scholar 

  70. Hsieh SH, Hsu MC, Liu WL, Chen WJ (2013) Study of Pt catalyst on graphene and its application to fuel cell. Appl Surf Sci 277:223–230. https://doi.org/10.1016/j.apsusc.2013.04.029

    Article  CAS  Google Scholar 

  71. Bharti A, Cheruvally G (2017) Influence of various carbon nano-forms as supports for Pt catalyst on proton exchange membrane fuel cell performance. J Power Sources 360:196–205. https://doi.org/10.1016/j.jpowsour.2017.05.117

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate the Middle East Technical University (METU) Central Research Laboratory for HR-TEM and SAED analyses and Atatürk University East Anatolia High Technology Application and Research Center (DAYTAM) for all the residual physical and chemical analyses.

Funding

The authors appreciate the NANOGRAFI Company (Turkey) for supplying graphene nanoplatelets in this study.

Author information

Authors and Affiliations

Authors

Contributions

AÖ: investigation, data curation, data interpretation, writing-original draft, conceptualization. ABY: supervision, resources, writing-review and editing.

Corresponding author

Correspondence to Ayşenur Öztürk.

Ethics declarations

Conflict of interests

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethics approval

This manuscript is the authors' original work and has not been published nor has it been submitted simultaneously elsewhere.

Consent for the publication

All authors have checked the manuscript and have agreed to the submission.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Öztürk, A., Bayrakçeken Yurtcan, A. Raw and pyrolyzed (with and without melamine) graphene nanoplatelets with different surface areas as PEM fuel cell catalyst supports. Carbon Lett. 31, 1191–1214 (2021). https://doi.org/10.1007/s42823-021-00243-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-021-00243-4

Keywords

Navigation