Skip to main content
Log in

Fluorescent carbon nano-materials from coal-based precursors: unveiling structure–function relationship between coal and nano-materials

  • Review
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Fluorescent carbon nano-materials with quantum confinement and edge effects have recently piqued attention in a variety of applications, including biological imaging, drug delivery, optoelectronics and sensing. These nano-materials can be synthesized from a variety of carbon-based precursors using both top-down and bottom-up methods. Coal and its derivatives typically include a vast crystalline network and condensed aromatic ring cluster, which can be easily exfoliated by chemical, electrochemical, or physical processes to produce nano-materials. As a result, they are regarded as a low-cost, abundant and efficient carbon source for the fabrication of high-yield nano-materials. Nano-materials synthesized from coal-based precursors have outstanding fluorescence, photostability, biocompatibility and low toxicity, among other properties. Their properties in optical sensors, LED devices, bio-imaging, and photo and electro-catalyst applications have already been investigated. In this review, we have highlighted current developments in the synthesis, structural properties and fluorescence properties of nano-materials synthesized from coal-based precursors.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Figure a, b and cg adapted with the permission from Ref. [52], copyright ACS and Ref. [40], copyright Springer Nature

Fig. 3

Adapted from Ref. [59], copyright Elsevier

Fig. 4

Adapted from Ref. [40], copyright Springer Nature

Fig. 5

Adapted from Ref. [64], copyright Elsevier

Fig. 6

Adapted from Ref. [71], copyright ACS

Fig. 7

Adapted from Ref. [70], copyright Elsevier

Fig. 8

Adapted from Ref. [69], copyright Springer Nature

Fig. 9

Adapted from Ref. [78], copyright RSC

Fig. 10

Images A and B are reproduced from Ref. [73] and Ref. [74], copyright ACS, respectively

Fig. 11

Adapted from Ref. [72], copyright Elsevier

Fig. 12

Adapted from Ref. [60], copyright ACS

Fig. 13

Adapted from Ref. [59], copyright Elsevier

Fig. 14.
Fig. 15

Adapted from Ref. [94], copyright Elsevier

Fig. 16

Figures A and B are adapted from Ref. [96], copyright ACS and Ref. [97], copyright RSC, respectively

Fig. 17

Figure a, b and c is adapted from Ref. [69], copyright Springer Nature, Ref. [71], copyright ACS and Ref. [92], copyright RSC, respectively

Fig. 18

Adapted from Ref. [61], copyright ACS

Scheme 1.

Similar content being viewed by others

References

  1. Babich A, Senk D (2019) Coke in the iron and steel industry, new trends in coal conversion: combustion, gasification, emissions, and coking, pp 367–404. https://doi.org/10.1016/B978-0-08-102201-6.00013-3

  2. Hook M, Zittel W, Schindler J, Aleklett K (2010) Global coal production outlooks based on a logistic model. Fuel 89:3546–3558. https://doi.org/10.1016/j.fuel.2010.06.013

    Article  CAS  Google Scholar 

  3. Babich A, Senk D (2013) Coal use in iron and steel metallurgy, the coal handbook: towards cleaner production. Woodhead Publishing, pp 267–311. https://doi.org/10.1533/9781782421177.3.267

    Book  Google Scholar 

  4. Heredy LA, Kostyo AE, Neuworth MB (1966) Studies on the structure of coals of different rank. Adv Chem 55:493–502. https://doi.org/10.1021/ba-1966-0055.ch031

    Article  Google Scholar 

  5. Levine DG, Schlosberg RH, Silbernagel BG (1982) Understanding the chemistry and physics of coal structure (a review). Proc Natl Acad Sci USA 79:3365–3370

    Article  CAS  Google Scholar 

  6. Lu L, Sahajwalla V, Kong C, Harris D (2001) Quantitative X–ray diffraction analysis and its application to various coals. Carbon 39:1821–1833. https://doi.org/10.1016/S0008-6223(00)00318-3

    Article  CAS  Google Scholar 

  7. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191. https://doi.org/10.1038/nmat1849

    Article  CAS  Google Scholar 

  8. Bakry R, Vallant RM, Najam-ul-Haq M, Rainer M, Szabo Z, Huck CW, Bonn GK (2007) Medicinal applications of fullerenes. Int J Nanomed 2:639–649

    CAS  Google Scholar 

  9. Hoang VC, Hassan M, Gomes VG (2018) Coal derived carbon nanomaterials—recent advances in synthesis and applications. Appl Mater Today 12:342–358. https://doi.org/10.1016/j.apmt.2018.06.007

    Article  Google Scholar 

  10. Suárez-Ruiz I, Crelling JC (2008) Coal-derived carbon materials; applied coal petrology. The role of petrology in coal utilization, Chap 8, pp 193–225. https://doi.org/10.1016/B978-0-08-045051-3.00008-7

  11. Thomas R, Manoj B (2020) Electrochemical efficacies of coal derived nanocarbons. Int J Coal Sci Technol. https://doi.org/10.1007/s40789-020-00379-0

    Article  Google Scholar 

  12. Guo M, Guo J, Jia D, Zhao H, Sun Z, Song X, Li Y (2015) Coal derived porous carbon fibers with tunable internal channels for flexible electrodes and organic matter absorption. J Mater Chem A 3:21178–21184. https://doi.org/10.1039/C5TA05743D

    Article  CAS  Google Scholar 

  13. Zhao H, Zhao D, Ye J, Wang P, Chai M, Li Z (2021) Directional oxygen functionalization by defect in different metamorphic-grade coal-derived carbon materials for sodium storage. Energy Environ Mater. https://doi.org/10.1002/eem2.12178

    Article  Google Scholar 

  14. Demming A (2010) King of the elements? Nanotechnology 21:300201. https://doi.org/10.1088/0957-4484/21/30/300201

    Article  Google Scholar 

  15. Oza G, Ravichandran M, Merupo V-I, Shinde S, Mewada A, Ramirez JT, Velumani S, Sharon M, Sharon M (2016) Camphor-mediated synthesis of carbon nanoparticles, graphitic shell encapsulated carbon nanocubes and carbon dots for bioimaging. Sci Rep 6:21286. https://doi.org/10.1038/srep21286

    Article  CAS  Google Scholar 

  16. Shehab M, Ebrahim S, Soliman M (2017) Graphene quantum dots prepared from glucose as optical sensor for glucose. J Lumin 184:110–116. https://doi.org/10.1016/j.jlumin.2016.12.006

    Article  CAS  Google Scholar 

  17. Hu Y, Yang J, Tian J, Jia L, Yu JS (2014) Waste frying oil as a precursor for one-step synthesis of sulfur-doped carbon dots with PH-sensitive photoluminescence. Carbon 77:775–782. https://doi.org/10.1016/j.carbon.2014.05.081

    Article  CAS  Google Scholar 

  18. Peng J, Gao W, Gupta BK, Liu Z, Romero-Aburto R, Ge L, Song L, Alemany LB, Zhan X, Gao G, Vithayathil SA, Kaipparettu BA, Marti AA, Hayashi T, Zhu J-J, Ajayan PM (2012) Graphene quantum dots derived from carbon fibers. Nano Lett 12:844–849. https://doi.org/10.1021/nl2038979

    Article  CAS  Google Scholar 

  19. Wei S, Zhang R, Liu Y, Ding H, Zhang YL (2016) Graphene quantum dots prepared from chemical exfoliation of multiwall carbon nanotubes: an efficient photocatalyst promoter. Catal Commun 74:104–109. https://doi.org/10.1016/j.catcom.2015.11.010

    Article  CAS  Google Scholar 

  20. Gao B, Du W, Hao Z, Zhou H, Zou D, Zhang R (2019) Bioinspired modification via green synthesis of mussel-inspired nanoparticles on carbon fiber surface for advanced composite materials. ACS Sustain Chem Eng 7(6):5638–5648. https://doi.org/10.1021/acssuschemeng.8b03590

    Article  CAS  Google Scholar 

  21. Lou M, Wang R, Zhang J, Tang X, Wang L, Guo Y, Jia D, Shi H, Yang L, Wang X, Sun Z, Wang T, Huang Y (2019) Optimized synthesis of nitrogen and phosphorus dual-doped coal-based carbon fiber supported Pd catalyst with enhanced activities for formic acid electrooxidation. ACS Appl Mater Interfaces 11(6):6431–6441. https://doi.org/10.1021/acsami.8b20736

    Article  CAS  Google Scholar 

  22. Farooqui UR, Ahmad AL, Hamid NA (2018) Graphene oxide: a promising membrane material for fuel cells. Renew Sust Energy Rev 82:714–733. https://doi.org/10.1016/j.rser.2017.09.081

    Article  CAS  Google Scholar 

  23. Su H, Hu YH (2021) Recent advances in graphene-based materials for fuel cell applications. Energy Sci Eng 9:958–983. https://doi.org/10.1002/ese3.833

    Article  CAS  Google Scholar 

  24. Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106(3):1105–1136. https://doi.org/10.1021/cr050569o

    Article  CAS  Google Scholar 

  25. Clancy AJ, Bayazit MK, Hodge SA, Skipper NT, Howard CA, Shaffer MSP (2018) Charged carbon nanomaterials: redox chemistries of fullerenes, carbon nanotubes, and graphenes. Chem Rev 118(16):7363–7408. https://doi.org/10.1021/acs.chemrev.8b00128

    Article  CAS  Google Scholar 

  26. Harrison BS, Atala A (2007) Carbon nanotube applications for tissue engineering. Biomaterials 28:344–353. https://doi.org/10.1016/j.biomaterials.2006.07.044

    Article  CAS  Google Scholar 

  27. Biswas MC, Islam MT, Nandy PK, Hossain MM (2021) Graphene quantum dots (GQDs) for bioimaging and drug delivery applications: a review. ACS Mater Lett 3(6):889–911. https://doi.org/10.1021/acsmaterialslett.0c00550

    Article  CAS  Google Scholar 

  28. Gupta V, Chaudhary N, Srivastava R, Sharma GD, Bhardwaj R, Chand S (2011) Luminscent graphene quantum dots for organic photovoltaic devices. J Am Chem Soc 133(26):9960–9963. https://doi.org/10.1021/ja2036749

    Article  CAS  Google Scholar 

  29. Shen J, Zhu Y, Yang X, Li C (2012) Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem Commun 48:3686–3699. https://doi.org/10.1039/C2CC00110A

    Article  CAS  Google Scholar 

  30. Kumar YR, Deshmukh K, Sadasivunic KK, Pasha SKK (2020) Graphene quantum dot based materials for sensing, bio-imaging and energy storage applications: a review. RSC Adv 10:23861–23898. https://doi.org/10.1039/D0RA03938A

    Article  CAS  Google Scholar 

  31. Liu ML, Chen BB, Li CM, Huang CZ (2019) Carbon dots: synthesis, formation mechanism, fluorescence origin and sensing applications. Green Chem 21:449–471. https://doi.org/10.1039/C8GC02736F

    Article  CAS  Google Scholar 

  32. Xia C, Zhu S, Feng T, Yang M, Yang B (2019) Evolution and synthesis of carbon dots: from carbon dots to carbonized polymer dots. Adv Sci 6:1901316. https://doi.org/10.1002/advs.201901316

    Article  CAS  Google Scholar 

  33. Lecroy GE, Sonkar SK, Yang F, Veca LM, Wang P, Tackett KN, Yu JJ, Vasile E, Qian H, Liu Y (2014) Toward structurally defined carbon dots as ultracompact fluorescent probes. ACS Nano 8:4522–4529. https://doi.org/10.1021/nn406628s

    Article  CAS  Google Scholar 

  34. Semeniuk M, Yi Z, Poursorkhabi V, Tjong J, Jaffer S, Lu ZH, Sain M (2019) Future perspectives and review on organic carbon dots in electronic applications. ACS Nano 13:6224–6255. https://doi.org/10.1021/acsnano.9b00688

    Article  CAS  Google Scholar 

  35. Cushing SK, Li M, Huang F, Wu N (2014) Origin of strong excitation wavelength dependent fluorescence of graphene oxide. ACS Nano 8:1002–1013. https://doi.org/10.1021/nn405843d

    Article  CAS  Google Scholar 

  36. Wang J, Cao S, Ding Y, Ma F, Lu W, Sun M (2016) Theoretical investigations of optical origins of fluorescent graphene quantum dots. Sci Rep 6:24850. https://doi.org/10.1038/srep24850

    Article  CAS  Google Scholar 

  37. Wang L, Zhu SJ, Wang HY, Qu SN, Zhang YL, Zhang JH, Chen QD, Xu HL, Han W, Yang B, Sun HB (2014) Common origin of green luminescence in carbon nanodots and graphene quantum dots. ACS Nano 8(3):2541–2547. https://doi.org/10.1021/nn500368m

    Article  CAS  Google Scholar 

  38. Bradley SJ, Kroon R, Laufersky G et al (2017) Heterogeneity in the fluorescence of graphene and graphene oxide quantum dots. Microchim Acta 184:871–878. https://doi.org/10.1007/s00604-017-2075-9

    Article  CAS  Google Scholar 

  39. Carbonaro CM, Corpino R, Salis M, Mocci F, Thakkar SV, Olla C, Ricci PC (2019) On the emission properties of carbon dots: reviewing data and discussing models. C J. Carbon Res. 5:60. https://doi.org/10.3390/c5040060

    Article  CAS  Google Scholar 

  40. Ye R, Xiang C, Lin J, Peng Z, Huang K, Yan Z, Cook NP, Samuel ELG, Hwang CC, Ruan G, Ceriotti G, Raji ARO, Martı AA, Tour JM (2013) Coal as an abundant source of graphene quantum dots. Nat Commun 4:2943. https://doi.org/10.1038/ncomms3943

    Article  CAS  Google Scholar 

  41. Sun Y, Wang S, Li C, Luo P, Tao L, Wei Y, Shi G (2013) Large scale preparation of graphene quantum dots from graphite with tunable fluorescence properties. Phys Chem Chem Phys 15:9907–9913. https://doi.org/10.1039/C3CP50691F

    Article  CAS  Google Scholar 

  42. Orem WH, Finkelman RB (2003) Coal formation and geochemistry: treatise on geochemistry. 7:191–222

  43. Flores RM (2014) Coalification, gasification, and gas storage: coal and coalbed gas, fueling the future. Elsevier, Amsterdam, pp 167–233

    Google Scholar 

  44. Davidson RM (1982) Molecular structure of coal. Coal Sci 1:83–160. https://doi.org/10.1016/B978-0-12-150701-5.50009-7

    Article  CAS  Google Scholar 

  45. Mathews JP, Chaffee AL (2012) The molecular representations of coal—a review. Fuel 96:1–14. https://doi.org/10.1016/j.fuel.2011.11.025

    Article  CAS  Google Scholar 

  46. Haenel MW (1992) Recent progress in coal structure research. Fuel 71:1211–1223. https://doi.org/10.1016/0016-2361(92)90046-Q

    Article  CAS  Google Scholar 

  47. Ke-ke L, Guo-yang L, Li-si Z, Jia J, You-yu Z, Ya-ting Z (2021) Coal-derived carbon nanomaterials for sustainable energy storage applications. New Carbon Mater 36:133–154. https://doi.org/10.1016/S1872-5805(21)60010-0

    Article  Google Scholar 

  48. Perry DL, Grint A (1983) Application of XPS to coal characterization. Fuel 62:1024–1033. https://doi.org/10.1016/0016-2361(83)90135-7

    Article  CAS  Google Scholar 

  49. Ulyanova EV, Molchanov AN, Prokhorov IY, Grinyov VG (2014) Fine structure of Raman spectra in coals of different rank. Int J Coal Geol 121:37–43. https://doi.org/10.1016/j.coal.2013.10.014

    Article  CAS  Google Scholar 

  50. Solomon PR, Carangelo RM (1982) FTIR analysis of coal. 1. Techniques and determination of hydroxyl concentrations. Fuel 61:663–669. https://doi.org/10.1016/0016-2361(82)90014-X

    Article  CAS  Google Scholar 

  51. Sharma A, Kyotani T, Tomita A (2000) Direct observation of layered structure of coals by a transmission electron microscope. Energy Fuels 14(2):515–516. https://doi.org/10.1021/ef990253h

    Article  CAS  Google Scholar 

  52. Sun Y, Alemany LB, Billups WE, Lu J, Yakobson BI (2011) Structural dislocations in anthracite. J Phys Chem Lett 2(20):2521–2524. https://doi.org/10.1021/jz2011429

    Article  CAS  Google Scholar 

  53. Crelling JC (2008) Coal carbonization: applied coal petrology, the role of petrology in coal utilization. Elsevier, Amsterdam, pp 173–192

    Google Scholar 

  54. Patrick JW, Wilkinson HC (1978) Analysis of metallurgical cokes: analytical methods for coal and coal products, vol 3. Academic Press, Cambridge, pp 339–370

    Book  Google Scholar 

  55. Gransden JF, Jorgensen JG, Manery N, Price JT, Ramey NJ (1991) Applications of microscopy to coke making. Int J Coal Geol 19:77–107. https://doi.org/10.1016/0166-5162(91)90015-B

    Article  CAS  Google Scholar 

  56. Patrick JW (1983) Microscopy of porosity in metallurgical cokes. J Microsc 132:333–343. https://doi.org/10.1111/j.1365-2818.1983.tb04598.x

    Article  CAS  Google Scholar 

  57. Martín Y, García R, Sole RA, Moinelo SR (1996) Structural characterization of coal tar pitches obtained by heat treatment under different conditions. Energy Fuels 102:436–442. https://doi.org/10.1021/ef950208j

    Article  Google Scholar 

  58. Morgan MS, Schlag WH, Wilt MH (1960) Surface properties of the quinoline-insoluble fraction of coal-tar pitch. J Chem Eng Data 5:81–84. https://doi.org/10.1021/je60005a020

    Article  CAS  Google Scholar 

  59. Kundu N, Bhunia P, Sarkar S, Biswas P (2020) Highly fluorescent carbon dots from quinoline insoluble residues in coal tar. Opt Mater 100:109638. https://doi.org/10.1016/j.optmat.2019.109638

    Article  CAS  Google Scholar 

  60. Ye R, Peng Z, Metzger A, Lin J, Mann JA, Huang K, Xiang C, Fan X, Samuel ELG, Alemany LB, Martí AA, Tour JM (2015) Bandgap engineering of coal-derived graphene quantum dots. ACS Appl Mater Interfaces 7:7041–7048. https://doi.org/10.1021/acsami.5b01419

    Article  CAS  Google Scholar 

  61. Nilewski L, Mendoza K, Jalilov AS et al (2019) Highly oxidized graphene quantum dots from coal as efficient antioxidants. ACS Appl Mater Interfaces 11(18):16815–16821. https://doi.org/10.1021/acsami.9b01082

    Article  CAS  Google Scholar 

  62. Dong Y, Lin J, Chen Y, Fu F, Chi Y, Chen G (2014) Graphene quantum dots, graphene oxide, carbon quantum dots and graphite nanocrystals in coals. Nanoscale 6:7410–7415. https://doi.org/10.1039/C4NR01482K

    Article  CAS  Google Scholar 

  63. Xu Y, Wang S, Hou X, Sun Z, Jiang Y, Dong Z, Tao Q, Man J, Cao Y (2018) Coal-derived nitrogen, phosphorus and sulfur co-doped graphene quantum dots: a promising ion fluorescent probe. Appl Surf Sci 445:519–526. https://doi.org/10.1016/j.apsusc.2018.03.156

    Article  CAS  Google Scholar 

  64. Hu S, Wei Z, Chang Q, Trinchi A, Yang J (2016) A facile and green method towards coal-based fluorescent carbon dots with photocatalytic activity. Appl Surf Sci 378:402–407. https://doi.org/10.1016/j.apsusc.2016.04.038

    Article  CAS  Google Scholar 

  65. Liu Q, Zhang J, He H, Huang G, Xing B, Jia J, Zhang C (2018) Green preparation of high yield fluorescent graphene quantum dots from coal-tar-pitch by mild oxidation. Nanomaterials 8:844. https://doi.org/10.3390/nano8100844

    Article  CAS  Google Scholar 

  66. Hu C, Yu C, Li M, Wang X, Yang J, Zhao Z, Eychmüller A, Sun Y-P, Qiu J (2014) Chemically tailoring coal to fluorescent carbon dots with tuned size and their capacity for Cu (II) detection. Small 10:4926–4933. https://doi.org/10.1002/smll.201401328

    Article  CAS  Google Scholar 

  67. Saikia M, Hower JC, Das T, Dutta T, Saikia BK (2019) Feasibility study of preparation of carbon quantum dots from Pennsylvania anthracite and kentucky bituminous coals. Fuel 243:433–440. https://doi.org/10.1016/j.fuel.2019.01.151

    Article  CAS  Google Scholar 

  68. Thiyagarajan SK, Raghupathy S, Palanivel D, Raji K, Ramamurthy P (2016) Fluorescent carbon nano dots from lignite: unveiling the impeccable evidence for quantum confinement. Phys Chem Chem Phys 18:12065–12073. https://doi.org/10.1039/C6CP00867D

    Article  CAS  Google Scholar 

  69. Kang S, Kim KM, Jung K, Son Y, Mhin S, Ryu JH, Shim KB, Lee B, Han H, Song T (2019) Graphene oxide quantum dots derived from coal for bioimaging: facile and green approach. Sci Rep 9:4101. https://doi.org/10.1038/s41598-018-37479-6

    Article  CAS  Google Scholar 

  70. Li M, Yu C, Hu C, Yang W, Zhao C, Wang S, Zhang M, Zhao J, Wang X, Qiu J (2017) Solvothermal conversion of coal into nitrogen-doped carbon dots with singlet oxygen generation and high quantum yield. Chem Eng J 320:570–575. https://doi.org/10.1016/j.cej.2017.03.090

    Article  CAS  Google Scholar 

  71. Sasikala SP, Henry L, Tonga GY, Huang K, Das R, Giroire B, Marre S, Rotello VM, Penicaud A, Poulin P, Aymonier C (2016) High yield synthesis of aspect ratio controlled graphenic materials from anthracite coal in supercritical fluids. ACS Nano 10:5293–5303. https://doi.org/10.1021/acsnano.6b01298

    Article  CAS  Google Scholar 

  72. He M, Guo X, Huang J, Shen H, Zeng Q, Wang L (2018) Mass production of tunable multicolor graphene quantum dots from an energy resource of coke by a one-step electrochemical exfoliation. Carbon 140:508–520. https://doi.org/10.1016/j.carbon.2018.08.067

    Article  CAS  Google Scholar 

  73. Zhang Y, Li K, Ren S, Dang Y, Liu G, Zhang R, Zhang K, Long X, Jia K (2019) Coal-derived graphene quantum dots produced by ultrasonic physical tailoring and their capacity for Cu(II) detection. ACS Sustain Chem Eng 7:9793–9799. https://doi.org/10.1021/acssuschemeng.8b06792

    Article  CAS  Google Scholar 

  74. Das T, Saikia BK (2017) Nanodiamonds produced from low-grade indian coals. ACS Sustain Chem Eng 5:9619–9624. https://doi.org/10.1021/acssuschemeng.7b02500

    Article  CAS  Google Scholar 

  75. Xue H, Yan Y, Hou Y, Li G, Hao C (2018) Novel carbon quantum dots for fluorescent detection of phenol and insights into the mechanism. New J Chem 42:11485–11492. https://doi.org/10.1039/C8NJ01611A

    Article  CAS  Google Scholar 

  76. Liu X, Hao J, Liu J, Tao H (2018) Green synthesis of carbon quantum dots from lignite coal and the application in Fe3+ detection. IOP Conf Ser Earth Environ Sci 113:012063

    Article  Google Scholar 

  77. Yang GW (2007) Laser ablation in liquids: applications in the synthesis of nanocrystals. Prog Mater Sci 52:648–698. https://doi.org/10.1016/j.pmatsci.2006.10.016

    Article  CAS  Google Scholar 

  78. Xiao J, Liu P, Yang GW (2015) Nanodiamonds from coal under ambient conditions. Nanoscale 7:6114–6125. https://doi.org/10.1039/C4NR06186A

    Article  CAS  Google Scholar 

  79. Hu C, Yu C, Li M, Wang X, Dong O, Wang G, Qiu J (2015) Nitrogen-doped carbon dots decorated onto graphene: a novel all-carbon hybrid electrocatalyst for enhanced oxygen reduction reaction. Chem Commun 51:3419–3422. https://doi.org/10.1039/C4CC08735F

    Article  CAS  Google Scholar 

  80. Chien CT, Li SS, Lai WJ, Yeh YC, Chen HA, Chen I, Chen LC, Chen KH, Nemoto T, Isoda S et al (2012) Tunable photoluminescence from graphene oxide. Angew Chem Int Ed 51:6662–6666. https://doi.org/10.1002/anie.201200474

    Article  CAS  Google Scholar 

  81. Zhu S, Tang S, Zhang J, Yang B (2012) Control the size and surface chemistry of graphene for the rising fluorescent materials. Chem Commun 48:4527–4539. https://doi.org/10.1039/C2CC31201H

    Article  CAS  Google Scholar 

  82. Margraf JT, Strauss V, Guldi DM, Clark T (2015) The electronic structure of amorphous carbon nanodots. J Phys Chem B 119(24):7258–7265. https://doi.org/10.1021/jp510620j

    Article  CAS  Google Scholar 

  83. Feng J, Dong H, Pang B, Shao F, Zhang C, Yu L, Dong L (2018) Theoretical study on the optical and electronic properties of graphene quantum dots doped with heteroatoms. Phys Chem Chem Phys 20:15244–15252. https://doi.org/10.1039/C8CP01403E

    Article  CAS  Google Scholar 

  84. Pan D, Zhang J, Li Z, Wu M (2010) Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv Mater 22:734–738. https://doi.org/10.1002/adma.200902825

    Article  CAS  Google Scholar 

  85. Ding H, Li XH, Chen XB, Wei JS, Li XB, Xiong HM (2020) Surface states of carbon dots and their influences on luminescence. J Appl Phys 127:231101. https://doi.org/10.1063/1.5143819

    Article  CAS  Google Scholar 

  86. Liu KK, Song SY, Sui LZ, Wu SX, Jing PT, Wang RQ et al (2019) Efficient red/near-infrared-emissive carbon nanodots with multiphoton excited upconversion fluorescence. Adv Sci 6(17):1900766. https://doi.org/10.1002/advs.201900766

    Article  CAS  Google Scholar 

  87. Li D, Liang C, Ushakova EV, Sun M et al (2019) Thermally activated upconversion near-infrared photoluminescence from carbon dots synthesized via microwave assisted exfoliation. Small 15(50):1905050. https://doi.org/10.1002/smll.201905050

    Article  CAS  Google Scholar 

  88. Chien CT, Li SS, Lai WJ, Yeh YC et al (2012) Tunable photoluminescence from graphene oxide. Angew Chem Int Ed 51(27):6662–6666. https://doi.org/10.1002/anie.201200474

    Article  CAS  Google Scholar 

  89. Fei H, Ye R, Ye G, Gong Y, Peng Z, Fan X, Samuel ELG, Ajayan PM, Tour JM (2014) Boron- and nitrogen-doped graphene quantum dots/graphene hybrid nanoplatelets as efficient electrocatalysts for oxygen reduction. ACS Nano 8(10):10837–10843. https://doi.org/10.1021/nn504637y

    Article  CAS  Google Scholar 

  90. Das T, Saikia BK, Dekaboruah HP, Bordoloi M, Neog D, Bora JJ, Lahkar J, Narzary B, Roy S, Ramaiah D (2019) Blue-fluorescent and biocompatible carbon dots derived from abundant low-quality coals. J Photochem Photobiol B 195:1–11. https://doi.org/10.1016/j.jphotobiol.2019.04.004

    Article  CAS  Google Scholar 

  91. Manoj B, Raj AM, Chirayil GT (2017) Tunable direct band gap photoluminescent organic semiconducting nanoparticles from lignite. Sci Rep 7:18012. https://doi.org/10.1038/s41598-017-18338-2

    Article  CAS  Google Scholar 

  92. Geng B, Yang D, Zheng F, Zhang C, Zhan J, Li Z, Pan D, Wang L (2017) Facile conversion of coal tar to orange fluorescent carbon quantum dots and their composite encapsulated by liposomes for bioimaging. New J Chem 41:14444–14451. https://doi.org/10.1039/C7NJ03005C

    Article  CAS  Google Scholar 

  93. Li M, Hu C, Yu C, Wang S, Zhang P, Qiu J (2015) Organic amine-grafted carbon quantum dots with tailored surface and enhanced photoluminescence properties. Carbon 91:291–297. https://doi.org/10.1016/j.carbon.2015.04.083

    Article  CAS  Google Scholar 

  94. Yewa YT, Looa AH, Soferb Z, Klímováb K, Pumeraa M (2017) Coke-derived graphene quantum dots as fluorescence nano-quencher in DNA detection. Appl Mater Today 7:138–143. https://doi.org/10.1016/j.apmt.2017.01.002

    Article  Google Scholar 

  95. Manoj B, Raj AM, Thomas GC (2018) Tailoring of low grade coal to fluorescent nanocarbon structures and their potential as a glucose sensor. Sci Rep 8:13891. https://doi.org/10.1038/s41598-018-32371-9

    Article  CAS  Google Scholar 

  96. Kovalchuk A, Huang K, Xiang CS, Marti AA, Tour JM (2015) Luminescent polymer composite films containing coal-derived graphene quantum dots. ACS Appl Mater Interfaces 7:26063. https://doi.org/10.1021/acsami.5b06057

    Article  CAS  Google Scholar 

  97. Feng X, Zhang Y (2019) A simple and green synthesis of carbon quantum dots from coke for white light-emitting devices. RSC Adv 9:33789. https://doi.org/10.1039/C9RA06946A

    Article  CAS  Google Scholar 

  98. Raj AM, Balachandran M (2020) Coal-based fluorescent zero-dimensional carbon nanomaterials: a short review. Energy Fuels 34(11):13291–13306. https://doi.org/10.1021/acs.energyfuels.0c02619

    Article  CAS  Google Scholar 

  99. Ghorai S, Roy I, De S, Dash PS, Basu A, Chattopadhyay D (2020) Exploration of the potential efficacy of natural resource derived blue emitting graphene quantum dots in cancer therapeutic application. New J Chem 44:5366–5376. https://doi.org/10.1039/C9NJ06239D

    Article  CAS  Google Scholar 

  100. He Z, Liu S, Zhang C, Fan L, Zhang J, Chen Q, Sun Y, He L, Wang Z, Zhang K (2021) Coal based carbon dots: recent advances in synthesis, properties, and applications. Nano Select. https://doi.org/10.1002/nano.202100019

    Article  Google Scholar 

  101. Tian L, Li Z, Wang P, Zhai X, Wang X, Li T (2021) Carbon quantum dots for advanced electrocatalysis. J Energy Chem 55:279–294. https://doi.org/10.1016/j.jechem.2020.06.057

    Article  Google Scholar 

  102. Zhang S, Zhu J, Qing Y et al (2017) Construction of hierarchical porous carbon nanosheets from template-assisted assembly of coal-based graphene quantum dots for high performance supercapacitor electrodes. Mater Today Energy 6:36–45. https://doi.org/10.1016/j.mtener.2017.08.003

    Article  Google Scholar 

  103. Zhang S, Zhu J, Qing Y, Wang L, Zhao J, Li J, Tian W, Jia D, Fan Z (2018) Ultramicroporous carbons puzzled by graphene quantum dots: integrated high gravimetric, volumetric, and areal capacitances for supercapacitors. Adv Funct Mater 28:1805898. https://doi.org/10.1002/adfm.201805898

    Article  CAS  Google Scholar 

  104. Tian W, Zhu J, Dong Y, Zhao J, Li J, Guo N, Lin H, Zhang S, Jia D (2020) Micelle-induced assembly of graphene quantum dots into conductive porous carbon for high rate supercapacitor electrodes at high mass loadings. Carbon 161:89–96. https://doi.org/10.1016/j.carbon.2020.01.044

    Article  CAS  Google Scholar 

  105. Yu J, Zhang CX, Yang YL, Yi GY, Fan RQ, Li L, Xing BL, Liu QR, Jia JB, Huang GX (2019) Lignite-derived carbon quantum dot/TiO2 heterostructure nanocomposites: photoinduced charge transfer properties and enhanced visible light photocatalytic activity. New J Chem 43:18355–18368. https://doi.org/10.1039/C9NJ04860J

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge Tata Steel India for providing the necessary facilities.

Funding

No funding was received for this work.

Author information

Authors and Affiliations

Authors

Contributions

NK has analysed and written the manuscript. NK provided the concept behind the manuscript and reviewed, edited the manuscript. SS reviewed and edited the manuscript.

Corresponding author

Correspondence to Niloy Kundu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval and consent to participate

NA. Authors declare no conflict of interests.

Consent for publication

NA

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundu, N., Sadhukhan, D. & Sarkar, S. Fluorescent carbon nano-materials from coal-based precursors: unveiling structure–function relationship between coal and nano-materials. Carbon Lett. 32, 671–702 (2022). https://doi.org/10.1007/s42823-021-00315-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-021-00315-5

Keywords

Navigation