Skip to main content
Log in

Preparation and electrochemical capacitive properties of C–MnO2 composite with foam-like structure based on modified rubber

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Nanoporous carbon/MnO2 (C–MnO2) composites with foam-like structure based on modified nitrile butadiene rubber were achieved by thermal treatment, followed by alkaline solution etching and dipping method. The XRD, nitrogen adsorption and desorption, and SEM and TEM were used to characterize the microstructure of the obtained C–SiO2, C and C–MnO2. Finally, all the obtained samples have been used in three-electrode system to study the electrochemical properties including cyclic voltammetry, galvanostatic charge/discharge and AC impedance for supercapacitor. The study found that the specific capacity of C–MnO2 electrode material for supercapacitor could reach as high as 109 F/g under the current density of 0.5 A/g, which is much higher than those of the other two. These superior electrochemical properties are attributed to the synergistic effect MnO2 particles with the C matrix which functions as a conductive support.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chung HT, Cullen DA, Higgins D, Sneed BT, Holby EF, More KL, Zelenay P (2017) Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst. Science 357:479–484

    Article  CAS  Google Scholar 

  2. Kaewruang S, Chiochan P, Phattharasupakun N, Suktha P, Kongpatpanich K, Maihom T, Limtrakul J, Sawangphruk M (2017) Strong adsorption of lithium polysulfides on ethylenediamine-functionalized carbon fiber paper interlayer providing excellent capacity retention of lithium-sulfur batteries. Carbon 123:492–501

    Article  CAS  Google Scholar 

  3. Zhang X, Sun X, Zhang H, Li C, Ma Y (2014) Comparative performance of birnessite-type MnO2 nanoplates and octahedral molecular sieve (OMS-5) nanobelts of manganese dioxide as electrode materials for supercapacitor application. Electrochim Acta 132:315–322

    Article  CAS  Google Scholar 

  4. Ma F, Zhao H, Sun L, Li Q, Huo L, Xia T, Gao S, Pang G, Shi Z, Feng S (2012) A facile route for nitrogen-doped hollow graphitic carbon spheres with superior performance in supercapacitors. J Mater Chem 22:13464

    Article  CAS  Google Scholar 

  5. Qorbani M, Naseri N, Moshfegh AZ (2015) Hierarchical Co3O4/Co(OH)2 nanoflakes as a supercapacitor electrode: experimental and semi-empirical model. ACS Appl Mater Interfaces 7:11172–11179

    Article  CAS  Google Scholar 

  6. Liu Y, Wang R, Yan X (2015) Synergistic effect between ultra-small nickel hydroxide nanoparticles and reduced graphene oxide sheets for the application in high-performance asymmetric supercapacitor. Sci Rep 5:11095–12006

    Article  Google Scholar 

  7. Shao Y, El-Kady MF, Lin CW, Zhu G, Marsh KL, Hwang JY, Zhang Q, Li Y, Wang H, Kaner RB (2016) 3D freeze-casting of cellular graphene films for ultrahigh-power-density supercapacitors. Adv Mater 28:6719–6726

    Article  CAS  Google Scholar 

  8. Tagade P, Hariharan KS, Basu S, Verma MKS, Kolake SM, Song T, Oh D, Yeo T, Doo S (2016) Bayesian calibration for electrochemical thermal model of lithium-ion cells. J Power Sources 320:296–309

    Article  CAS  Google Scholar 

  9. Deng J, Wang X, Duan X, Liu P (2015) Facile preparation of MnO2/graphene nanocomposites with spent battery powder for electrochemical energy storage. ACS Sustain Chem Eng 3:1330–1338

    Article  CAS  Google Scholar 

  10. Zhang J, Yang X, He Y, Bai Y, Kang L, Xu H, Shi F, Lei Z, Liu Z-H (2016) δ-MnO2/holey graphene hybrid fiber for all-solid-state supercapacitor. J Mater Chem A 4:9088–9096

    Article  CAS  Google Scholar 

  11. Xiao Z, Fan L, Xu B, Zhang S, Kang W, Kang Z, Lin H, Liu X, Zhang S, Sun D (2017) Green fabrication of ultrathin Co3O4 nanosheets from metal-organic framework for robust high-rate supercapacitors. ACS Appl Mater Interfaces 9:41827–41836

    Article  CAS  Google Scholar 

  12. Huang G, Zhang Y, Wang L, Sheng P, Peng H (2017) Fiber-based MnO2/carbon nanotube/polyimide asymmetric supercapacitor. Carbon 125:595–604

    Article  CAS  Google Scholar 

  13. Ochai-Ejeh FO, Madito MJ, Momodu DY, Khaleed AA, Olaniyan O, Manyala N (2017) High performance hybrid supercapacitor device based on cobalt manganese layered double hydroxide and activated carbon derived from cork (Quercus suber). Electrochim Acta 252:41–54

    Article  CAS  Google Scholar 

  14. Xu L, Jia M, Li Y, Jin X, Zhang F (2017) High-performance MnO2-deposited graphene/activated carbon film electrodes for flexible solid-state supercapacitor. Sci Rep 7:12857–12865

    Article  Google Scholar 

  15. Weng Y-T, Pan H-A, Lee R-C, Huang T-Y, Chu Y, Lee J-F, Sheu H-S, Wu N-L (2015) Spatially confined MnO2 nanostructure enabling consecutive reversible charge transfer from Mn(IV) to Mn(II) in a mixed pseudocapacitor-battery electrode. Adv Energy Mater 5:1500772–1500779

    Article  Google Scholar 

  16. Yu S, Yang N, Zhuang H, Meyer J, Mandal S, Williams OA, Lilge I, Schönherr H, Jiang X (2015) Electrochemical supercapacitors from diamond. J Phys Chem C 119:18918–18926

    Article  CAS  Google Scholar 

  17. Long W, Fang B, Ignaszak A, Wu Z, Wang Y-J, Wilkinson D (2017) Biomass-derived nanostructured carbons and their composites as anode materials for lithium ion batteries. Chem Soc Rev 46:7176–7190

    Article  CAS  Google Scholar 

  18. Chung DY, Son YJ, Yoo JM, Kang JS, Ahn C-Y, Park S, Sung Y-E (2017) Coffee waste-derived hierarchical porous carbon as a highly active and durable electrocatalyst for electrochemical energy applications. ACS Appl Mater Interfaces 9:41303–41313

    Article  CAS  Google Scholar 

  19. Acevedo B, Barriocanal C (2015) Texture and surface chemistry of activated carbons obtained from tyre wastes. Fuel Process Technol 134:275–283

    Article  CAS  Google Scholar 

  20. Acevedo B, Barriocanal C, Lupul I, Gryglewicz G (2015) Properties and performance of mesoporous activated carbons from scrap tyres, bituminous wastes and coal. Fuel 151:83–90

    Article  CAS  Google Scholar 

  21. Boota M, Paranthaman MP, Naskar AK, Li Y, Akato K, Gogotsi Y (2015) Waste tire derived carbon–polymer composite paper as pseudocapacitive electrode with long cycle life. Chemsuschem 8:3576–3581

    Article  CAS  Google Scholar 

  22. Zhi M, Yang F, Meng F, Li M, Manivannan A, Wu N (2014) Effects of pore structure on performance of an activated-carbon supercapacitor electrode recycled from scrap waste tires. ACS Sustain Chem Eng 2:1592–1598

    Article  CAS  Google Scholar 

  23. Liang Y-R, Cao W-L, Zhang X-B, Tan Y-J, He S-J, Zhang L-Q (2009) Preparation and properties of nanocomposites based on different polarities of nitrile-butadiene rubber with clay. J Appl Polym Sci 112:3087–3094

    Article  CAS  Google Scholar 

  24. Enterría M, Figueiredo JL (2016) Nanostructured mesoporous carbons: tuning texture and surface chemistry. Carbon 108:79–102

    Article  Google Scholar 

Download references

Acknowledgements

The research was supported by the financial support of the Shanxi Province Foundation for Youths (2015021072), the Program for the Innovative Talents of Taiyuan Institute of Technology (TITXD201403), Special Youth Science and Technology Innovation (QKCZ201635) and the Fund for Shanxi “1331 Project” Key Subjects Construction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yurong Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Ma, X., Liang, Y. et al. Preparation and electrochemical capacitive properties of C–MnO2 composite with foam-like structure based on modified rubber. Carbon Lett. 29, 547–552 (2019). https://doi.org/10.1007/s42823-019-00012-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-019-00012-4

Keywords

Navigation