Skip to main content

Advertisement

Log in

MXene/Ni foam supported Co-doped Ni3S2 as a binder-free electrode for enhanced performance of supercapacitors

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The reasonable design of electrode materials with high electrochemical activity and stable structure after long cycles can effectively improve the electrochemical performance of supercapacitors. In this paper, Co-doped Ni3S2 supported on Ti3C2/Ni foam (Co-Ni3S2/Ti3C2/NF) composites were prepared using a feasible hydrothermal method. The composite materials were characterized by scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The results showed that the Co-Ni3S2/Ti3C2/NF materials had a three-dimensional network structure. Electrochemical performance tests were conducted for the Co-Ni3S2/Ti3C2/NF electrode. The prepared Co-Ni3S2/Ti3C2/NF electrode has good electrochemical performance with specific capacitance of 1457 F g−1 at 1 A g−1. At 10 A g−1, the specific capacity after 5000 cycles is 127.35% of the initial specific capacity. The asymmetric supercapacitor with Co-Ni3S2/Ti3C2/NF as the positive electrode and activated carbon (AC) as the negative electrode has an energy density of 30.4 Wh kg−1 at power energy density of 0.8 kW kg−1. This strategy provides a useful method for the design of supercapacitor electrodes with excellent electrochemical performance coated with MXenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhu Q, Zhao D, Cheng M et al (2019) A new view of supercapacitors: integrated supercapacitors. Adv Energy Mater 9:1901081. https://doi.org/10.1002/aenm.201901081

    Article  CAS  Google Scholar 

  2. Chen D, Chen H, Chang X et al (2017) Hierarchical CoMn-layered double hydroxide nanowires on nickel foam as electrode material for high-capacitance supercapacitor. J Alloys Compd 729:866–873. https://doi.org/10.1016/j.jallcom.2017.07.313

    Article  CAS  Google Scholar 

  3. Xia C, Surendran S, Ji S et al (2022) A sulfur self-doped multifunctional biochar catalyst for overall water splitting and a supercapacitor from Camellia japonica flowers. Carbon Energy 4:491–505. https://doi.org/10.1002/cey2.207

    Article  CAS  Google Scholar 

  4. Li Q, Liu M, Huang F et al (2022) Co9S8@ MnO2 core-shell defective heterostructure for high-voltage flexible supercapacitor and Zn-ion hybrid supercapacitor. Chem Eng J 437:135494. https://doi.org/10.1016/j.cej.2022.135494

  5. Zhang X, Yang S, Lu W et al (2021) MXenes induced formation of Ni-MOF microbelts for high-performance supercapacitors. J Colloid Interface Sci 592:95–102. https://doi.org/10.1016/j.jcis.2021.02.042

    Article  CAS  PubMed  Google Scholar 

  6. Zhong M, Zhang M, Li X (2022) Carbon nanomaterials and their composites for supercapacitors. Carbon Energy 4:950–985. https://doi.org/10.1002/cey2.219

    Article  CAS  Google Scholar 

  7. Rawat S, Mishra RK, Bhaskar T (2022) Biomass derived functional carbon materials for supercapacitor applications. Chemosphere 286:131961. https://doi.org/10.1016/j.chemosphere.2021.131961

  8. Lyu L, Hooch Antink W, Kim YS et al (2021) Recent development of flexible and stretchable supercapacitors using transition metal compounds as electrode materials. Small 17:2101974. https://doi.org/10.1002/smll.202101974

    Article  CAS  Google Scholar 

  9. Wu B, Qian H, Nie Z et al (2020) Ni3S2 nanorods growing directly on Ni foam for all-solid-state asymmetric supercapacitor and efficient overall water splitting. J Energy Chem 46:178–186. https://doi.org/10.1016/j.jechem.2019.11.011

    Article  Google Scholar 

  10. Wang Y, Ding Y, Guo X et al (2019) Conductive polymers for stretchable supercapacitors. Nano Res 12:1978–1987. https://doi.org/10.1007/s12274-019-2296-9

    Article  CAS  Google Scholar 

  11. Deyba MA, Mele G (2019) PANI@Co-porphyrins composite for the construction of supercapacitors. J Energy Storage 26:101013. https://doi.org/10.1016/j.est.2019.101013

  12. Liu G, Wang B, Liu T et al (2018) 3D self-supported hierarchical core/shell structured MnCo2O4@CoS arrays for high-energy supercapacitors. J Mater Chem A 6:1822–1831. https://doi.org/10.1039/C7TA10140F

    Article  CAS  Google Scholar 

  13. Wang X, Shi B, Fang Y et al (2017) High capacitance and rate capability of a Ni3S2@CdS core-shell nanostructure supercapacitor. J Mater Chem A 5:7165–7172. https://doi.org/10.1039/C7TA00593H

    Article  CAS  Google Scholar 

  14. Li S, Huang W, Yang Y et al (2018) Hierarchical layer-by-layer porous FeCo2S4@Ni(OH)2 arrays for all-solid-state asymmetric supercapacitors. J Mater Chem A 6:20480–20490. https://doi.org/10.1039/C8TA07598K

    Article  CAS  Google Scholar 

  15. Chen Q, Jin J, Kou Z et al (2020) Cobalt-doping in hierarchical Ni3S2 nanorod arrays enables high areal capacitance. J Mater Chem A 8:13114–13120. https://doi.org/10.1039/D0TA04483K

    Article  CAS  Google Scholar 

  16. Li K, Li J, Zhu Q et al (2022) Three-dimensional MXenes for supercapacitors: a review. Small Methods 6:2101537. https://doi.org/10.1002/smtd.202101537

    Article  CAS  Google Scholar 

  17. Pu S, Wang Z, Xie Y et al (2022) Origin and regulation of self-discharge in MXene supercapacitors. Adv Funct Mater 2208715. https://doi.org/10.1002/adfm.202208715

  18. Ma R, Chen Z, Zhao D et al (2021) Ti3C2Tx MXene for electrode materials of supercapacitors. J Mater Chem A 9:11501–11529. https://doi.org/10.1039/D1TA00681A

    Article  CAS  Google Scholar 

  19. Luo Y, Tian Y, Tang Y et al (2021) 2D hierarchical nickel cobalt sulfides coupled with ultrathin titanium carbide (MXene) nanosheets for hybrid supercapacitors. J Power Sources 482:228961. https://doi.org/10.1016/j.jpowsour.2020.228961

  20. Tian YP, Yang CH, Que WX et al (2017) Ni foam supported quasi-core-shell structure of ultrathin Ti3C2 nanosheets through electrostatic layer-by-layer self-assembly as high rate-performance electrodes of supercapacitors. J Power Sources 369:78–86. https://doi.org/10.1016/j.jpowsour.2017.09.085

    Article  CAS  Google Scholar 

  21. Guo J, Zhao Y, Ma T (2019) Electrostatic self-assembly of 2D delaminated MXene (Ti3C2) onto Ni foam with superior electrochemical performance for supercapacitor. Electrochim Acta 305:164–174. https://doi.org/10.1016/j.electacta.2019.03.025

    Article  CAS  Google Scholar 

  22. Cui Y, Zhang J, Jin C et al (2019) Ionic liquid-controlled growth of NiCo2S4 3D hierarchical hollow nanoarrow arrays on Ni foam for superior performance binder free hybrid supercapacitors. Small 15:1804318. https://doi.org/10.1002/smll.201804318

    Article  CAS  Google Scholar 

  23. Wang YG, Song YF, Xia YY (2016) Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem Soc Rev 45:5925–5950. https://doi.org/10.1039/C5CS00580A

    Article  CAS  PubMed  Google Scholar 

  24. Li J, Yuan X, Lin C et al (2017) Achieving high pseudocapacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification. Adv Energy Mater 7:1602725. https://doi.org/10.1002/aenm.201602725

    Article  CAS  Google Scholar 

  25. Liu J, Zhang L, Wu HB et al (2014) High-performance flexible asymmetric supercapacitors based on a new graphene foam/carbon nanotube hybrid film. Energy Environ Sci 7:3709–3719. https://doi.org/10.1039/C4EE01475H

    Article  CAS  Google Scholar 

  26. Wang Z, Su H, Liu F et al (2019) Establishing highly-efficient surface Faradaic reaction in flower-like NiCo2O4 nano-/micro-structures for next-generation supercapacitors. Electrochim Acta 307:302–309. https://doi.org/10.1016/j.electacta.2019.03.227

    Article  CAS  Google Scholar 

  27. Chen SG, Li YH, Wu BX et al (2018) 3D meso/macroporous Ni3S2@Ni composite electrode for high-performance supercapacitor. Electrochim Acta 275:40–49. https://doi.org/10.1016/j.electacta.2018.04.152

    Article  CAS  Google Scholar 

  28. Zou X, Liu Y, Li GD et al (2017) Ultrafast formation of amorphous bimetallic hydroxide films on 3D conductive sulfide nanoarrays for large-current-density oxygen evolution electrocatalysis. Adv Mater 29:1700404–1700410. https://doi.org/10.1002/adma.201700404

    Article  CAS  Google Scholar 

  29. Zhou Y, Tong X, Pang N et al (2021) Ni3S2 nanocomposite structures doped with Zn and Co as long-lifetime, high-energy-density, and binder-free cathodes in flexible aqueous nickel-zinc batteries. ACS Appl Mater Interfaces 13:34292–34300. https://doi.org/10.1021/acsami.1c08108

    Article  CAS  PubMed  Google Scholar 

  30. Feng JX, Wu JQ, Tong YX et al (2018) Efficient hydrogen evolution on Cu nanodots-decorated Ni3S2 nanotubes by optimizing atomic hydrogen adsorption and desorption. J Am Chem Soc 140:610. https://doi.org/10.1021/jacs.7b08521

    Article  CAS  PubMed  Google Scholar 

  31. Jian J, Yuan L, Qi H et al (2018) Sn-Ni3S2 ultrathin nanosheets as efficient bifunctional water-splitting catalysts with a large current density and low overpotential. ACS Appl Mater Interfaces 10:40568. https://doi.org/10.1021/acsami.8b14603

    Article  CAS  PubMed  Google Scholar 

  32. Ding Y, Du X, Zhang X (2021) Cu-Doped Ni3S2 interlaced nanosheet arrays as high-efficiency electrocatalyst boosting the alkaline hydrogen evolution. ChemCatChem 13:1824–1833. https://doi.org/10.1002/cctc.202001838

    Article  CAS  Google Scholar 

  33. Zhang D, He W, Zhang Z et al (2019) Structure-design and synthesis of nickel-cobalt-sulfur arrays on nickel foam for efficient hydrogen evolution. J Alloys Compd 785:468–474. https://doi.org/10.1016/j.jallcom.2019.01.184

    Article  CAS  Google Scholar 

  34. Gao WK, Qin JF, Wang K et al (2018) Facile synthesis of Fe-doped Co9S8 nanomicrospheres grown on nickel foam for efficient oxygen evolution reaction. Appl Surf Sci 454:46–53. https://doi.org/10.1016/j.apsusc.2018.05.099

    Article  CAS  Google Scholar 

  35. Wang X, Wang S, Chen S et al (2020) Facile one-pot synthesis of binder-free nano/micro structured dendritic cobalt activated nickel sulfide: a highly efficient electrocatalyst for oxygen evolution reaction. Int J Hydrog Energy 45:19304–19312. https://doi.org/10.1016/j.ijhydene.2020.05.105

    Article  CAS  Google Scholar 

  36. Xia QX, Fu JJ, Yun JM et al (2017) High volumetric energy density annealed-MXene nickel oxide/MXene asymmetric supercapacitor. RSC Adv 7:11000–11011. https://doi.org/10.1039/c6ra27880a

    Article  CAS  Google Scholar 

  37. Thotiyl MMO, Freunberger SA, Peng ZQ et al (2013) A stable cathode for the aprotic Li-O2 battery. Nat Mater 12:1050–1056. https://doi.org/10.1038/nmat3737

    Article  CAS  Google Scholar 

  38. Xue Q, Pei Z, Huang Y et al (2017) Mn3O4 nanoparticles on layer-structured Ti3C2-MXene towards the oxygen reduction reaction and zinc-air batteries. J Mater Chem A 5:20818–20823. https://doi.org/10.1039/C7TA04532H

    Article  CAS  Google Scholar 

  39. Tong X, Li Y, Pang N et al (2021) Co-doped Ni3S2 porous nanocones as high-performance bifunctional electrocatalysts in water splitting. Chem Eng J 425:130455. https://doi.org/10.1016/j.cej.2021.130455

  40. Guo J, Zhao Y, Liu A et al (2019) Electrostatic self-assembly of 2D delaminated MXene (Ti3C2) onto Ni foam with superior electrochemical performance for supercapacitor. Electrochim Acta 305:164–174. https://doi.org/10.1016/j.electacta.2019.03.025

    Article  CAS  Google Scholar 

  41. Chou SW, Lin JY (2013) Cathodic deposition of flaky nickel sulfide nanostructure as an electroactive material for high-performance supercapacitors. J Electrochem Soc 160:D178–D182. https://doi.org/10.1149/2.078304jes

    Article  CAS  Google Scholar 

  42. Li L, San Hui K, Hui KN et al (2017) Facile synthesis of NiAl layered double hydroxide nanoplates for high-performance asymmetric supercapacitor. J Alloys Compd 721:803–812. https://doi.org/10.1016/j.jallcom.2017.06.062

    Article  CAS  Google Scholar 

  43. Liu S, Jun SC (2017) Hierarchical manganese cobalt sulfide core-shell nanostructures for high-performance asymmetric supercapacitors. J Power Sources 342:629–637. https://doi.org/10.1016/j.jpowsour.2016.12.057

    Article  CAS  Google Scholar 

  44. Lan Y, Zhao H, Zong Y et al (2018) Phosphorization boosts the capacitance of mixed metal nanosheet arrays for high performance supercapacitor electrodes. Nanoscale 10:11775–11781. https://doi.org/10.1039/C8NR01229F

    Article  CAS  PubMed  Google Scholar 

  45. Sun S, Xie Z, Yan Y et al (2019) Hybrid energy storage mechanisms for sulfur-decorated Ti3C2 MXene anode material for high-rate and long-life sodium-ion batteries. Chem Eng J 366:460–467. https://doi.org/10.1016/j.cej.2019.01.185

    Article  CAS  Google Scholar 

  46. Pan Z, Cao F, Hu X et al (2019) A facile method for synthesizing CuS decorated Ti3C2 MXene with enhanced performance for asymmetric supercapacitors. J Mater Chem A 7:8984–8992. https://doi.org/10.1039/C9TA00085B

    Article  CAS  Google Scholar 

  47. Wu W, Zhao C, Niu D et al (2021) Ultrathin N-doped Ti3C2-MXene decorated with NiCo2S4 nanosheets as advanced electrodes for supercapacitors. Appl Surf Sci 539:148272. https://doi.org/10.1016/j.apsusc.2020.148272

  48. Wu W, Niu D, Zhu J et al (2019) Hierarchical architecture of Ti3C2@ PDA/NiCo2S4 composite electrode as high-performance supercapacitors. Ceram Int 45:16261–16269. https://doi.org/10.1016/j.ceramint.2019.05.149

    Article  CAS  Google Scholar 

  49. Wang F, Zhu Y, Tian W et al (2018) Co-doped Ni3S2@CNT arrays anchored on graphite foam with a hierarchical conductive network for high-performance supercapacitors and hydrogen evolution electrodes. J Mater Chem A 6:10490–10496. https://doi.org/10.1039/C8TA03131B

    Article  CAS  Google Scholar 

  50. Kötz R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45:2483–2498. https://doi.org/10.1016/S0013-4686(00)00354-6

    Article  Google Scholar 

  51. Chiu CT, Chen DH (2018) One-step hydrothermal synthesis of three-dimensional porous Ni-Co sulfide/reduced graphene oxide composite with optimal incorporation of carbon nanotubes for high performance supercapacitors. Nanotechnology 29:175602. https://doi.org/10.1088/1361-6528/aaaff5

  52. Zhang Z, Huang X, Li H et al (2017) All-solid-state flexible asymmetric supercapacitors with high energy and power densities based on NiCo2S4@ MnS and active carbon. J Energy Chem 26:1260–1266. https://doi.org/10.1016/j.jechem.2017.09.025

    Article  Google Scholar 

Download references

Funding

This work was supported by the financial support received from the Natural Science Foundation of China (No. 21875192).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Shen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, M., Shen, J., Zeng, T. et al. MXene/Ni foam supported Co-doped Ni3S2 as a binder-free electrode for enhanced performance of supercapacitors. J Solid State Electrochem 27, 2533–2543 (2023). https://doi.org/10.1007/s10008-023-05543-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05543-5

Keywords

Navigation