Skip to main content
Log in

Digital twin in the power generation industry

  • Review
  • Published:
JMST Advances Aims and scope Submit manuscript

Abstract

The energy industry is undergoing unprecedented changes as it pursues global trends towards decarbonization, decentralization, and digitalization. Rapid development and deployment of big data and artificial intelligence technology over the past few decades have transformed the power generation industry in turning into a smarter industry that can monitor and adjust the status of key assets in real time. Digital twins, which are currently in the spotlight, are a technology that reproduce real physical assets using physical and data-driven models to simulate or predict the state of a system. There is a wide range of assets suitable for digital twins in power generation. They aim to identify changes in the system to detect anomalies or make maintenance decisions. The need for digital twins for energy transformation continues to grow. This paper provides a review of digital twin technology specific to the power generation industry. Among the power generation systems, digital twin studies for the combined cycle gas turbine, wind turbine, solar, and nuclear power plant were classified according to the lifecycle, complexity, and type of digital twin model, and the specific features and limitations of each application were analyzed. The goal is to provide readers with a curated summary of use cases which they may find useful in applying to their own work. The paper also explores the challenges and potential future research directions for increasing efficiency, availability, reliability, and solving environmental problems.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. James, A. Cervantes, Study of Industry 4.0 and Its Impact on Lean Transformation in Aerospace Manufacturing, International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (DETC) (ASME, 2019)

  2. J. Lee, B. Bagheri, H.A. Kao, A cyber-physical systems architecture for Industry 4.0-based manufacturing systems. Manuf. Lett. 3, 18–23 (2015)

    Article  Google Scholar 

  3. H. Lasi, P. Fettke, H.G. Kemper, T. Feld, M. Hoffmann, Industry 4.0. Bus. Inform. Syst Eng. 6(4), 239–242 (2014)

    Article  Google Scholar 

  4. Q. Qi, D. Zhao, T. W. Liao, F. Tao, Modeling of Cyber-physical Systems and Digital Twin based on Edge Computing, Fog Computing and Cloud Computing Towards Smart Manufacturing, 13th International Manufacturing Science and Engineering Conference (MSEC) (ASME, 2018)

  5. J. Lee, X. Jia, Q. Yang, X. Li, Collaborative Platform for Remote Manufacturing Systems using Industrial Internet and Digital Twin in the COVID-19 Era, 16th International Manufacturing Science and Engineering Conference (MSEC) (ASME, 2021)

  6. S. Sadjina, S. Skjong, A. Pobitzer, L. T. Kyllingstad, R. Fiskerstrand, S. Torben, J. D.D.A. Granholt, Seismic RTDT: Real-time Digital Twin for Boosting Performance of Seismic Operation, 38th International Conference on Ocean Offshore and Arctic Engineering (OMAE) (ASME, 2019)

  7. A. R. Nejad, E. Purcell, M. Valavi, R. Hudak, B. Lehmann, F. G. Guzman, F. Behrendt, A. Bohm, F. B. Polach, B. M. Nickerson, A. Bekker, W. Drazyk, Condition Monitoring of Ship Propulsion Systems: State-of-the-Art, Development Trend and Role of Digital Twin. 40th International Conference on Ocean, Offshore and Arctic Engineering (OMAE) (ASME, 2021)

  8. T. W. Martins, R. Anderl, Digital Twins for Space Factory 4.0. International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (DETC) (ASME, 2019)

  9. Z. Chen, L. Huang, Digital twins for information-sharing in remanufacturing supply chain: a review. Energy 220, 119712 (2021)

    Article  Google Scholar 

  10. T. Ahmad, H. Zhu, D. Zhang, R. Tariq, A. Bassam, F. Ullah, A. AlGhamdi, S. Alshamrani, Energetics systems and artificial intelligence: applications of industry 4.0. Energy Rep. 8, 334–361 (2022)

    Article  Google Scholar 

  11. DIGITAL TWIN A Primer on Digital Twins with a Focus on Gas Turbines, EPRI Report 3002020549 (2021)

  12. Grieves, Digital twin: manufacturing excellence through virtual factory replication, Digital Twin White Paper (2014)

  13. M. Grieves, J. Vickers, Digital twin: mitigating unpredictable, undesirable emergent behavior in complex systems, in Transdisciplinary perspectives on complex systems: new findings and approaches. (Springer International Publishing, 2016), pp.85–113. https://doi.org/10.1007/978-3-319-38756-7_4

    Chapter  Google Scholar 

  14. E. J. Tuegel, The Airframe Digital Twin: Some Challenges to Realization, in 2012 Collection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, Hawaii, April 23–26 (AIAA, 2012)

  15. Clarivate, “Web of Science.” (2022). https://www.webofscience.com/

  16. A.E. Onile, R. Machlev, E. Petlenkov, Y. Levron, J. Belikov, Uses of the digital twins concept for energy services, intelligent recommendation systems, and demand side management: a review. Energy Rep. 7, 997–1015 (2021)

    Article  Google Scholar 

  17. Q. Li, Y. He, An overview of digital twin concept for key components of renewable energy systems. Int. J. Robot. Autom. Tech. (2021). https://doi.org/10.31875/2409-9694.2021.08.4

    Article  Google Scholar 

  18. A. Rasheed, O. San, T. Kvamsdal, Digital twin: values, challenges and enablers from a modeling perspective. IEEE Access 8, 21980–22012 (2020)

    Article  Google Scholar 

  19. W. Hu, T. Zhang, X. Deng, Z. Liu, J. Tan, Digital twin: a state-of-the-art review of its enabling technologies, applications and challenges. J. Intell. Manuf. Spec. Equip. 2(1), 1–34 (2021)

    Google Scholar 

  20. C. Cimino, E. Negri, L. Fumagalli, Review of digital twin applications in manufacturing. Com. Indus. 113, 103130 (2019)

    Article  Google Scholar 

  21. V. Ardourel, J. Jebeile, Numerical instability and dynamical systems. Eur. J. Phil. Sci. (2021). https://doi.org/10.1007/s13194-021-00372-7

    Article  MathSciNet  Google Scholar 

  22. S. Krishnababu, O. Valero, R. Wells, AI assisted high fidelity multi-physics digital twin of industrial gas turbines, ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition, GT2021-58925 (2021)

  23. N. Zecevic, Energy intensification of steam methane reformer furnace in ammonia production by application of digital twin concept. Int. J. Sust. Ener. 41(1), 12–28 (2021)

    Article  Google Scholar 

  24. V. Zaccaria, M. Stenfelt, K. G. Kyprianidis, Fleet monitoring and diagnostics framework based on digital twin of aero-engines, ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, GT2018-76414 (2018)

  25. J. Lim, A. Perullo, J. Milton, R. Whiteacre, C. Jackson, C. Griffin, D. Noble, L. Boche, S. Seachman, L. Angello, S. Maley, T. C. Lieuwen, The EPRI Gas Turbine Digital Twin - a Platform for Operator Focused Integrated Diagnostics and Performance Forecasting, ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition, GT2021-59572 (2021)

  26. P. Pezzini, H. Bonilla, G. Johnson, Z. Reinhart, K. M. Bryden, A Digital Twin Environment Designed for the Implementation of Real Time Monitoring Tool, ASME 2021 Power Conference, Power2021-65384 (2021)

  27. E.J. Tuegel, A.R. Ingraffea, T.G. Eason, S.M. Spottswood, Reengineering aircraft structural life prediction using a digital twin. Int. J. Aero. Eng. (2021). https://doi.org/10.1155/2011/154798

    Article  Google Scholar 

  28. M. Liu, B. Wang, and D. Liu, A Digital Twin Modeling Method for Turbofan Engine Real-time Test Data Analysis and Performance Monitoring, in Proceedings - 11th International Conference on Prognostics and System Health Management, PHM-Jinan 2020, Oct. 2020, 444–449 (2020)

  29. L. Moroz, M. Burlaka, and V. Barannik, Application of Digital Twin for Gas Turbine Off-design Performance and Operation Analyses,” in AIAA Propulsion and Energy 2019 Forum, Indianapolis, August 19–22, AIAA2019-3913 (2019)

  30. M. Xiong, H. Wang, Q. Fu, Y. Xu, Digital twin-driven aero-engine intelligent predictive maintenance. Int. J. Adv. Manuf. Tech. 114, 3751–3761 (2021)

    Article  Google Scholar 

  31. T. Wang, Z. Liu, Digital twin and its application for the maintenance of aircraft, in Handbook of nondestructive evaluation 4.0. (Springer, 2021), pp.1–19

    Google Scholar 

  32. H. Meyer, J. Zimdahl, A. Kamtsiuris, R. Meissner, F. Raddatz, S. Haufe, Development of a digital twin for aviation research, Deutscher Luft- and Raumfahrtkongress (2020)

  33. Y. Zhou, T. Xing, Y. Song, Y. Li, X. Zhu, G. Li, S. Ding, Digital-twin-driven geometric optimization of centrifugal impeller with free-form blades for five-axis flank milling. J. Manuf. Syst. 58, 22–35 (2021)

    Article  Google Scholar 

  34. Z. Xu, F. Ji, S. Ding, Y. Zhao, Y. Zhou, Q. Zhang, F. Du, Digital twin-driven optimization of gas exchange system of 2-stroke heavy fuel aircraft engine. J. Manuf. Syst. 58, 132–145 (2021)

    Article  Google Scholar 

  35. M.A. Bolotov, V.A. Pechenin, N.V. Ruzanov, I.A. Grachev, Information model and software architecture for the implementation of the digital twin of the turbine rotor. J. Phys. Conf. Ser. 1368(5), 052013 (2019)

    Article  Google Scholar 

  36. N. Petro, F. Lopez, Machine learning-based digital twins reduce seasonal remapping in aeroderivative gas turbines. J. Ener. Res. Tech. (2022). https://doi.org/10.1115/1.4052994

    Article  Google Scholar 

  37. E. Losi, M. Venturini, L. Manservigi, G.F. Ceschini, G. Bechini, Anomaly detection in gas turbine time series by means of Bayesian hierarchical models. J. Eng. Gas Turb. Power 141(11), 111019 (2019)

    Article  Google Scholar 

  38. R. Polyakov, E. Paholkin, I. Kudryavcev, N. Krupenin, Improving the Safety of Power Plants by Developing a Digital Twin and Expert System for Adaptive-predictive Analysis of the Operability of Gas Turbine Units, ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition, GT2020-14217 (2020)

  39. V. Panov, S. Cruz-Manzo, Gas Turbine Performance Digital Twin for Real-time Embedded Systems, ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition, GT2020-14664 (2020)

  40. W.Y. Lee, W.N. Dawes, J.D. Coull, The required aerodynamic simulation fidelity to usefully support a gas turbine digital twin for manufacturing. J. Glob. Power Prop. Socie. 5, 15–27 (2021)

    Article  Google Scholar 

  41. P. Cappanera, G. Manfrida, A. Nicoletti, L. Pacini, S. Romagnoli, R. Rossi, Digital model of a gas turbine performance prediction and preventive maintenance. AIP Conf. Proc. 2191, 020033 (2019)

    Article  Google Scholar 

  42. S. Kim, J. Im, S. Kim, M. K., J. Kim, Y. Kim, Diagnostics using First-principles based Digital Twin and Application for Gas Turbine Verification Test, SSRN (2021)

  43. M. Burston, K. Ranasinghe, A. Gardi, V. Parezanović, R. Ajaj, R. Sabatini, Design principles and digital control of advanced distributed propulsion systems. Energy 241, 122788 (2022)

    Article  Google Scholar 

  44. W. Hu, Y. He, Z. Liu, J. Tan, M. Yang, J. Chen, A Hybrid Wind Speed Prediction Approach based on Ensemble Empirical Mode Decomposition and BO-LSTM Neural Networks for Digital Twin, ASME 2020 Power Conference collocated with the 2020 International Conference on Nuclear Engineering, Power2020-16500 (2020)

  45. M. Fahim, V. Sharma, T.-V. Cao, B. Canberk, T.Q. Duong, Machine learning-based digital twin for predictive modeling in wind turbines. IEEE Access 10, 14184–14194 (2022)

    Article  Google Scholar 

  46. M. Chetan, S. Yao, D.T. Griffith, Multi-fidelity digital twin structural model for a sub-scale downwind wind turbine rotor blade. Wind Energy 24(12), 1368–1387 (2021)

    Article  ADS  Google Scholar 

  47. H. Zhao, W. Hu, Z. Liu, J. Tan, A Capsnet-based Fault Diagnosis Method for a Digital Twin of a Wind Turbine Gearbox, ASME 2021 Power Conference, POWER2021-66029 (2021)

  48. M. Wang, C. Wang, A. Hnydiuk-Stefan, S. Feng, I. Atilla, Z. Li, Recent progress on reliability analysis of offshore wind turbine support structures considering digital twin solutions. Ocean Eng. 232, 109168 (2021)

    Article  Google Scholar 

  49. F. Tao, M. Zhang, Y. Liu, A.Y.C. Nee, Digital twin driven prognostics and health management for complex equipment. CIRP Ann. 67(1), 169–172 (2018)

    Article  Google Scholar 

  50. A. Puras, J. Fernández Vicinay Marine Innovación Sestao, S. A. Carlos Garrido-Mendoza, J. Basurko, N. Fonseca Sintef Ocean Trondheim, N. S. Iratxe Arrabi Zunibal Derio, A Concept for Floating Offshore Wind Mooring System Integrity Management Based on Monitoring, Digital Twin and Control Technologies, International Conference on Offshore Mechanics and Arctic Engineering, OMAE2021-61936 (2021)

  51. F. Pimenta, J. Pacheco, C.M. Branco, C.M. Teixeira, F. Magalhaes, Development of a digital twin of an onshore wind turbine using monitoring data. J. Phys. Conf. Ser 1618, 022065 (2020)

    Article  Google Scholar 

  52. H. Solman, J.K. Kirkegaard, M. Smits, B. van Vliet, S. Bush, Digital twinning as an act of governance in the wind energy sector. Environ. Sci. Policy 127, 272–279 (2021)

    Article  Google Scholar 

  53. J.D.M. de Kooning, K. Stockman, J. de Maeyer, A. Jarquin-Laguna, L. Vandevelde, Digital twins for wind energy conversion systems: a literature review of potential modelling techniques focused on model fidelity and computational load. Processes 9(12), 2224 (2021)

    Article  Google Scholar 

  54. J. Liu, X. Lu, Y. Zhou, J. Cui, S. Wang, Z. Zhao, Design of Photovoltaic Power Station Intelligent Operation and Maintenance System Based on Digital Twin, 6th International Conference on Robotics and Automation Engineering, ICRAE 2021, 206–211 (2021)

  55. P. Jain, J. Poon, J.P. Singh, C. Spanos, S.R. Sanders, S.K. Panda, A digital twin approach for fault diagnosis in distributed photovoltaic systems. IEEE Trans. Power Electron. 35(1), 940–956 (2019)

    Article  ADS  Google Scholar 

  56. H. Cai, X. Song, Y. Zeng, T. Jiang, S. Schlegel, D. Westermann, A practical approach to construct a digital twin of a power grid using harmonic spectra, 56th International Universities Power Engineering Conference: Powering Net Zero Emissions, UPEC 2021-Proceedings, 9548199 (2021)

  57. F. Delussu, D. Manzione, R. Meo, G. Ottino, M. Asare, Experiments and comparison of digital twinning of photovoltaic panels by machine learning models and a cyber-physical model in modelica. IEEE Trans. Industr. Inform. 18(6), 4018–4028 (2022)

    Article  Google Scholar 

  58. J. Xiong, H. Ye, W. Pei, K. Li, Y. Han, Real-time FPGA-digital twin monitoring and diagnostics for PET applications, 6th Asia Conference on Power and Electrical Engineering, ACPEE 1499, 531–536 (2021)

  59. G. Zhang, X. Wang, Digital twin modeling for photovoltaic panels based on hybrid neural network, IEEE 1st International Conference on Digital Twins and Parallel Intelligence, DTPI 52967, 90–93 (2021)

  60. M. Dhimish, V. Holmes, B. Mehrdadi, M. Dales, Multi-layer photovoltaic fault detection algorithm. High Voltage 2(4), 244–252 (2017)

    Article  Google Scholar 

  61. M.M. Sultanov, E.K. Arakelyan, I.A. Boldyrev, V.S. Lunenko, P.D. Menshikov, Digital twins application in control systems for distributed generation of heat and electric energy. Ather 42(2), 89–101 (2021)

    Google Scholar 

  62. R. Platon, J. Martel, N. Woodruff, T.Y. Chau, Online fault detection in PV systems. IEEE Trans. Sustain. Energy 6(4), 1200–1207 (2015)

    Article  ADS  Google Scholar 

  63. L. Lin, P. Rouxelin, P. Athe, N. Dinh, J. Lane, Development and Assessment of Data-driven Digital Twins in a Nearly Autonomous Management and Control System for Advanced Reactors, 2020 International Conference on Nuclear Engineering, ICONE2020-16813 (2020)

  64. Y. Taruta, S. Yanagihara, T. Hashimoto, S. Kobayashi, Y. Iguchi, K. Kitamura, Y. Kouda, K. Tomoda, Consideration of Relationship Between Decommissioning With Digital-Twin and Knowledge Management, 2020 International Conference on Nuclear Engineering, ICONE2020–16457 (2020)

  65. S. Mohanty, T. W. Elmer, S. Bakhtiari, R. B. Vilim, A Review of SQL vs NoSQL Database for Nuclear Reactor Digital Twin Applications: With Example MongoDB Based NoSQL Database for Digital Twin Model of a Pressurized-Water-Reactor Steam-Generator, ASME 2021 International Mechanical Engineering Congress and Exposition, IMECE73153 (2021)

  66. E. Deri, C. Varé, V. Varé, M. Wintergerst, Development of Digital Twins of PWR Steam Generators: Description of Two Maintenance-Oriented Use Cases, 28th International Conference on Nuclear Engineering, ICONE28-63246 (2021)

  67. C. Brosinsky, D. Westermann, R. Krebs, Recent and prospective developments in power system control centers: Adapting the digital twin technology for application in power system control centers, IEEE International Energy Conference, ENERGYCON, 1–6 (2018)

  68. M. Zhou, J. Yan, D. Feng, Digital twin and its application to power grid online analysis. CSEE J. Power Energy Syst. (2019). https://doi.org/10.17775/CSEEJPES.2018.01460

    Article  Google Scholar 

  69. X. Tang, Y. Ding, J. Lei, H. Yang, Y. Song, Dynamic load balancing method based on optimal complete matching of weighted bipartite graph for simulation tasks in multi-energy system digital twin applications. Energy Rep. 8, 1423–1431 (2022)

    Article  Google Scholar 

  70. Z. Lei, H. Zhou, W. Hu, G. Liu, S. Guan, X. Feng, Toward a web based digital twin thermal power plant. IEEE Trans. Indus. Inform. 18(3), 1716–1725 (2022)

    Article  Google Scholar 

  71. Z. Liu, W. Chen, C. Zhang, C. Yang, H. Chu, Data super-network fault prediction model and maintenance strategy for mechanical product based on digital twin. IEEE Access 7, 177284–177296 (2019)

    Article  Google Scholar 

  72. J.C. Antolin-Urbeneja, A.G. Gonzalez, J.M. Lopez-Guede, J.M.L.D. Ipina, Digital industrial furnaces: challenges for energy efficiency under VULKANO project. J. Energy Syst. (2018). https://doi.org/10.30521/jes.474499

    Article  Google Scholar 

  73. A.K. Sleiti, J.S. Kapat, L. Vesely, Digital twin in energy industry: proposed robust digital twin for power plant and other complex capital-intensive large engineering systems. Energy Rep. 8, 3704–3726 (2022)

    Article  Google Scholar 

  74. G. Steindl, M. Stagl, L. Kasper, W. Kastner, R. Hofmann, Generic digital twin architecture for industrial energy systems. Appl. Sci. 10(24), 1–20 (2020)

    Article  Google Scholar 

  75. F. Gao, B. He, Power supply line selection decision system for new energy distribution network enterprises based on digital twinning. Energy Rep. 7, 760–771 (2021)

    Article  Google Scholar 

  76. L. Vesely, E. Fernandez, J. Kapat, J.H. Ghouse, D. Bhattacharyya, C.J. Ruscher, A.J. Rolling, Fault management architecture based on a digital twin approach. J. Energy Resour. Technol. (2022). https://doi.org/10.1115/1.4053134

    Article  Google Scholar 

  77. B. He, L. Liu, D. Zhang, Digital twin-driven remaining useful life prediction for gear performance degradation: a review. J. Comput. Inf. Sci. Eng. (2021). https://doi.org/10.1115/1.4049537

    Article  Google Scholar 

  78. J. Yu, P. Liu, Z. Li, Hybrid modelling and digital twin development of a steam turbine control stage for online performance monitoring. Renew. Sustain. Ener. Rev. (2020). https://doi.org/10.1016/j.rser.2020.110077

    Article  Google Scholar 

  79. M.M. Rathore, S.A. Shah, D. Shukla, E. Bentafat, S. Bakiras, The role of AI, machine learning, and big data in digital twinning: a systematic literature review, challenges, and opportunities. IEEE Access 9, 32030–32052 (2021)

    Article  Google Scholar 

  80. H. Wang, Z. Lei, X. Zhang, B. Zhou, J. Peng, A review of deep learning for renewable energy forecasting. Energy Convers. Manag. (2019). https://doi.org/10.1016/j.enconman.2019.111799

    Article  Google Scholar 

  81. D.S. Pillai, N. Rajasekar, A comprehensive review on protection challenges and fault diagnosis in PV systems. Renew. Sustain. Ener. Rev. 91, 18–40 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge Danny Fregosi of EPRI for his contributions to the PV section of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woosung Choi.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, W., Hudachek, K., Koskey, S. et al. Digital twin in the power generation industry. JMST Adv. 6, 103–119 (2024). https://doi.org/10.1007/s42791-024-00065-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42791-024-00065-1

Keywords

Navigation