Skip to main content
Log in

Antimicrobial resistance, virulence genes, and ESBL (Extended Spectrum Beta-Lactamase) production analysis in E. coli strains from the Rio Grande/Rio Bravo River in Tamaulipas, Mexico

  • Environmental Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The Rio Grande/Rio Bravo River is used as a major water supply for diverse recreational, household, and industrial activities in Northeast Tamaulipas, Mexico, and South Texas. In this study, we sampled surface water from 38 sites along Rio Grande/Rio Bravo River (Díaz Ordaz, Reynosa and Matamoros). We isolated 105 E. coli strains that were molecularly and phenotypically characterized. The percentage of virulence genes detected in E. coli were: hlyA (15.23%), stx2 (11.42%), stx1 (9.52%), bfp (0.95%), and eae (0.0) and combinations of stx1/stx2 (2.85%), stx2/hlyA (1.90%), stx1/bfp (0.95%) and stx2/bfp (0.95%) were detected in these strains. Resistance to more than one antibiotic was detected in 85.71%, and 5.71% of strains were extended-spectrum β-lactamase-E. coli (ESBL-EC). These results indicate the presence of potentially pathogenic E. coli strains in the Rio Grande/Rio Bravo River; therefore, it can be considered a reservoir of pathogenic strains and represents a health risk for the population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Data available under request.

Code availability

Not applicable.

References

  1. Acosta-Dibarrat J, Enriquez-Gómez E, Talavera-Rojas M, Soriano-Vargas E, Navarro A, Morales-Espinosa R (2021) Characterization of commensal Escherichia coli isolates from slaughtered sheep in Mexico. J Infect Dev Ctries 15(11):1755–1760. https://doi.org/10.3855/JIDC.14001

    Article  CAS  PubMed  Google Scholar 

  2. Aguilar-Montes de Oca S, Talavera-Rojas M, Soriano-Vargas E, Barba-León J, Vazquez-Navarrete J (2015) Determination of extended spectrum β-lactamases/AmpC β-lactamases and plasmid-mediated quinolone resistance in Escherichia coli isolates obtained from bovine carcasses in Mexico. Trop Anim Health Prod 47(5):975–981. https://doi.org/10.1007/s11250-015-0818-3

    Article  PubMed  Google Scholar 

  3. Ahmed W, Gyawali P, Toze S (2015) Quantitative PCR measurements of Escherichia coli including Shiga toxin-producing E. coli (STEC) in animal feces and environmental waters. Environ Sci Technol 49(5):3084–3090. https://doi.org/10.1021/es505477n

    Article  CAS  PubMed  Google Scholar 

  4. Cabal A, Vicente J, Alvarez J, Barasona JA, Boadella M, Dominguez L, Gortazar C (2017) Human influence and biotic homogenization drive the distribution of Escherichia coli virulence genes in natural habitats. MicrobiologyOpen 6(3):E00445. https://doi.org/10.1002/mbo3.445

  5. Canizalez-Roman A, Gonzalez-Nuñez E, Vidal JE, Flores-Villaseñor H, León-Sicairos N (2013) Prevalence and antibiotic resistance profiles of diarrheagenic Escherichia coli strains isolated from food items in northwestern Mexico. Int J Food Microbiol 164(1):36–45. https://doi.org/10.1016/j.ijfoodmicro.2013.03.020

    Article  CAS  PubMed  Google Scholar 

  6. Cleary J, Lai LC, Shaw RK, Straatman-Iwanowska A, Donnenberg MS, Frankel G, Knutton S (2004) Enteropathogenic Escherichia coli (EPEC) adhesion to intestinal epithelial cells: role of bundle-forming pili (BFP). EspA Filaments Intimin Microbiol 150(Pt 3):527–538

    CAS  Google Scholar 

  7. Clinical and Laboratory Standards Institute (2019) Performance standards for antimicrobial susceptibility testing; 29th informational supplement. CLSI document M100-S29. Clinical and Laboratory Standards Institute, Wayne

  8. Conte D, Palmeiro JK, da Silva Nogueira K, de Lima TMR, Cardoso MA, Pontarolo R, Degaut Pontes FL, Dalla-Costa LM (2017) Characterization of CTX-M enzymes, quinolone resistance determinants, and antimicrobial residues from hospital sewage, wastewater treatment plant, and river water. Ecotoxicol Environ Saf 136(July 2016):62–69. https://doi.org/10.1016/j.ecoenv.2016.10.031

    Article  CAS  PubMed  Google Scholar 

  9. Czatzkowska M, Wolak I, Harnisz M, Korzeniewska E (2022) Impact of anthropogenic activities on the dissemination of ARGs in the environment—a review. In Int J Environ Res Public Health 19(19):12853. https://doi.org/10.3390/ijerph191912853

    Article  CAS  Google Scholar 

  10. Decreto Ejecutivo N° 33903-S (2007) «Reglamento para la Evaluación y Clasificación de la Calidad de Cuerpos de Agua Superficiales,» de Diario Oficial La Gaceta: 178, San José. Costa Rica, UK

    Google Scholar 

  11. Delgado-Gardea MCE, Tamez-Guerra P, Gomez-Flores R, de la Serna FJZD, Eroza-de la Vega G, Nevárez-Moorillón GV, Pérez-Recoder MC, Sánchez-Ramírez B, González-Horta MDC, Infante-Ramírez R (2016) Multidrug-resistant bacteria isolated from surface water in Bassaseachic Falls National Park, Mexico. Int J Environ Res Public Health 13(6):1–15. https://doi.org/10.3390/ijerph13060597

    Article  CAS  Google Scholar 

  12. Franz E, Veenman C, Van Hoek AHAM, Husman ADR, Blaak H (2015) Pathogenic Escherichia coli producing Extended-Spectrum β-Lactamases isolated from surface water and wastewater. Sci Rep 5(May):1–9. https://doi.org/10.1038/srep14372

    Article  CAS  Google Scholar 

  13. Gomes TAT, Elias WP, Scaletsky ICA, Guth BEC, Rodrigues JF, Piazza RMF, Ferreira LCS, Martinez MB (2016) Diarrheagenic Escherichia coli. Braz J Microbiol 47:3–30. https://doi.org/10.1016/j.bjm.2016.10.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jarlier V, Nicolas MH, Fournier G, Philippon A (1988) Extended broad-spectrum β-lactamases conferring transferable resistance to newer β-lactam agents in Enterobacteriaceae: hospital prevalence and susceptibility patterns. Clin Infect Dis 10(4):867–878. https://doi.org/10.1093/clinids/10.4.867

    Article  CAS  Google Scholar 

  15. Krumperman PH (1983) Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods. Appl Environ Microbiol 46(1):165–170. https://doi.org/10.1007/s11356-014-3887-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kürekci C, Aydin M, Yipel M, Katouli M, Gündogdu A (2017) Characterization of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli in Asi (Orontes) River in Turkey. J Water Health 15(5):788–798. https://doi.org/10.2166/wh.2017.257

    Article  PubMed  Google Scholar 

  17. Lienemann T, Pitkänen T, Antikainen J, Mölsä E, Miettinen I, Haukka K, Vaara M, Siitonen A (2011) Shiga toxin-producing Escherichia coli O100:H-: Stx2ein drinking water contaminated by wastewater in Finland. Curr Microbiol 62(4):1239–1244. https://doi.org/10.1007/s00284-010-9832-x

    Article  CAS  PubMed  Google Scholar 

  18. Liu H, Zhou H, Li Q, Peng Q, Zhao Q, Wang J, Liu X (2018) Molecular characteristics of extended-spectrum β-lactamase-producing Escherichia coli isolated from the rivers and lakes in Northwest China. BMC Microbiol 18(1):1–12. https://doi.org/10.1186/s12866-018-1270-0

    Article  CAS  Google Scholar 

  19. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, Paterson DL, Rice LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL (2012) Multidrug-resistant, extensively drug-resistant and pan drug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18(3):268–281. https://doi.org/10.1111/j.1469-0691.2011.03570.x

  20. Magiorakos A, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF (2012) Bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18(3):268–281. https://doi.org/10.1111/j.1469-0691.2011.03570.x

  21. Michael GB, Kaspar H, Siqueira AK, de Freitas Costa E, Corbellini LG, Kadlec K, Schwarz S (2017) Extended-spectrum β-lactamase (ESBL)-producing Escherichia coli isolates collected from diseased food-producing animals in the GERM-Vet monitoring program 2008–2014. Vet Microbiol 200:142–150. https://doi.org/10.1016/j.vetmic.2016.08.023

    Article  PubMed  Google Scholar 

  22. Miranda-Romero AL, Silva-Sanchez J, Garza-Ramos U, Barrios H, Sánchez-Pérez A, Reyna-Flores F (2017) Molecular characterization of ESBL-producing Escherichia coli isolates from hospital- and community-acquired infections in NW Mexico. Diagn Microbiol Infect Dis 87(1):49–52. https://doi.org/10.1016/j.diagmicrobio.2016.10.006

    Article  CAS  PubMed  Google Scholar 

  23. Moiseenko TI (2022) Surface water under growing anthropogenic loads: from global perspectives to regional implications. In Water (Switzerland) 14(22):3730. https://doi.org/10.3390/w14223730

    Article  CAS  Google Scholar 

  24. Najjuka CF, Kateete DP, Kajumbula HM, Joloba ML, Essack SY (2016) Antimicrobial susceptibility profiles of Escherichia coli and Klebsiella pneumoniae isolated from outpatients in urban and rural districts of Uganda. BMC Res Notes 9(1):1–14. https://doi.org/10.1186/s13104-016-2049-8

    Article  CAS  Google Scholar 

  25. Norma Oficial Mexicana NOM-112-SSA1–1994. Bienes y servicios. Determinación de bacterias coliformes. Técnica del número más probable. Diario oficial de la federación

  26. Norma Oficial Mexicana NOM-210-SSA1–2014 Productos y servicios. Métodos de prueba microbiológicos. Determinación de microorganismos indicadores. Determinación de microorganismos patógenos. Diario oficial de la federación

  27. Olivas-enriquez E, Flores-margez JP, Serrano-alamillo M, Soto-mejía E, Iglesias-olivas J, Fortis-hernández ESM (2011) Indicadores Fecales Y Patógenos En Agua Descargada Al Río Bravo. Terra Latinoamericana 29(4):449–457

    Google Scholar 

  28. Omar KB, Barnard TG (2014) Detection of diarrhoeagenic Escherichia coli in clinical and environmental water sources in South Africa using single-step 11-gene m-PCR. World J Microbiol Biotechnol 30(10):2663–2671. https://doi.org/10.1007/s11274-014-1690-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pakbin B, Brück WM, Rossen JWA (2021) Virulence factors of enteric pathogenic Escherichia coli: A review. Int J Mole Sci 22(18):9922. https://doi.org/10.3390/ijms22189922

    Article  CAS  Google Scholar 

  30. Park SJ, Cotter PA, Gunsalus RP (1995) Regulation of malate dehydrogenase (mdh) gene expression in Escherichia coli in response to oxygen, carbon, and heme availability. J Bacteriol 177(22):6652–6656. https://doi.org/10.1128/jb.177.22.6652-6656.1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Purohit MR, Chandran S, Shah H, Diwan V, Tamhankar AJ, Lundborg CS (2017) Antibiotic resistance in an Indian rural community: A ’one-health observational study on commensal coliform from humans, animals, and water. Int J Environ Res Public Health 14(4):1–13. https://doi.org/10.3390/ijerph14040386

    Article  Google Scholar 

  32. Ramírez Castillo FY, Avelar González FJ, Garneau P, Díaz FM, Guerrero Barrera AL, Harel J (2013) Presence of multi-drug resistant pathogenic Escherichia coli in the San Pedro River located in the State of Aguascalientes, Mexico. Front Microbiol 4(JUN):1–16. https://doi.org/10.3389/fmicb.2013.00147

    Article  Google Scholar 

  33. Requena-Castro R, Aguilera-Arreola MG, Martínez-Vázquez AV, Bocanegra-García V (2018) Prevalencia de genes de virulencia de Escherichia coli en aguas superficiales del Río Bravo en la ciudad de Reynosa, Tamaulipas. Mex J Biotechnol 3(3):87–93. https://doi.org/10.29267/mxjb.2018.3.3.87

    Article  Google Scholar 

  34. Rosas I, Salinas E, Martínez L, Cruz-Còrdova A, Gonzàlez-Pedrajo B, Espinosa N, Amábile-Cuevas CF (2015) Characterization of Escherichia coli isolates from an urban lake receiving water from a wastewater treatment plant in Mexico City: Fecal pollution and antibiotic resistance. Curr Microbiol 71(4):490–495. https://doi.org/10.1007/s00284-015-0877-8

    Article  CAS  PubMed  Google Scholar 

  35. Sta Ana KM, Madriaga J, Espino MP (2021) β-Lactam antibiotics and antibiotic resistance in Asian lakes and rivers: An overview of contamination, sources and detection methods. Environ Pollut 15(275):16624. https://doi.org/10.1016/j.envpol.2021.116624

  36. Suzuki Y, Niina K, Matsuwaki T, Nukazawa K, Iguchi A (2018) Bacterial flora analysis of coliforms in sewage, river water, and ground water using MALDI-TOF mass spectrometry. J Environ Sci Health, Part A 53(2):160–173

    Article  CAS  Google Scholar 

  37. Švec P, Devriese LA (2009) Genus Enterococcus. In: De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer K-H, Whitman WB (eds) Bergey’s manual of systematic bacteriology, 2nd edn. Springer, New York, pp 594–607

  38. Traoré A, Mulaudzi K, Chari G, Foord S, Mudau L, Barnard T, Potgieter N (2016) The impact of human activities on microbial quality of rivers in the vhembe district, South Africa. Int J Environ Res Public Health 13(8):817. https://doi.org/10.3390/ijerph13080817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang P, Chen B, Yuan R, Li C, Li Y (2016) Characteristics of aquatic bacterial community and the influencing factors in an urban river. Sci Total Environ 569–570:382–389. https://doi.org/10.1016/j.scitotenv.2016.06.130

    Article  CAS  PubMed  Google Scholar 

  40. Wang RF, Cao WW, Cerniglia CE (1997) A universal protocol for PCR detection of 13 species of foodborne pathogens in foods. J Appl Microbiol 83(6):727–736. https://doi.org/10.1046/j.1365-2672.1997.00300.x

    Article  CAS  PubMed  Google Scholar 

  41. Yamashita N, Katakawa Y, Tanaka H (2017) Occurrence of antimicrobial resistance bacteria in the Yodo River basin, Japan and determination of beta-lactamases producing bacteria. Ecotoxicol Environ Saf 143(April):38–45. https://doi.org/10.1016/j.ecoenv.2017.04.053

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

MGAA, GRS, and VBG received support from COFAA and EDI from IPN and SNI from CONACyT.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

The investigation, methodology, resources, writing the initial draft, [RCC, MGAA, AVMV, WLCP] writing – review & editing [GR, VBG], conceptualization, supervision [VBG].

Corresponding author

Correspondence to Virgilio Bocanegra-García.

Ethics declarations

Ethics approval

Not applicable.

Conflicts of interest/Competing interests

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Responsible Editor: Ernani Pinto.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Requena-Castro, R., Aguilera-Arreola, M.G., Martínez-Vázquez, A.V. et al. Antimicrobial resistance, virulence genes, and ESBL (Extended Spectrum Beta-Lactamase) production analysis in E. coli strains from the Rio Grande/Rio Bravo River in Tamaulipas, Mexico. Braz J Microbiol (2024). https://doi.org/10.1007/s42770-024-01376-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42770-024-01376-0

Keywords

Navigation