Skip to main content
Log in

The multispecies stinkbug iflavirus Halyomorpha halys virus detected in the multispecies stinkbug egg parasitoid microwasp, Telenomus podisi (Ashmead) (Hymenoptera: Platygastridae)

  • Soil and Agriculture - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Wasps are important parasitoids of stinkbugs and frequently exposed to various types of microorganisms through environmental contact and fecal–oral transmission route. Many parasitize stinkbug eggs and are commercially used in the field to control insect population. The parasitoid T. podisi is known for its high parasitism capacity and ability to target multiple species of stinkbugs. In this study we asked whether T. podisi exposed to eggs infected by a multispecies asymptomatic stinkbug virus, the Halyomorpha halys virus (HhV) would get infected. HhV is a geographically distributed multispecies iflavirus previously found to infect four stinkbug hosts, including three Brazilian species, Chinavia ubica, Euschistus heros and Diceraeus melacanthus, and T. posidi can parasitize all of them. As results, RT-PCR screening revealed positive samples for the HhV genome in two out of four tested pools of T. podisi, whereas the antigenome, indicative of replicative activity, was not detected. The wasps were raised in E. heros eggs that presented both the genome and the antigenome forms of the HhV genome. Subsequent RNA-deep sequencing of HhV positive T. podisi RNA pools yielded a complete genome of HhV with high coverage. Phylogenetic analysis positioned the isolate HhV-Tp (isolate Telenomus podisi) alongside with the stinkbug HhV. Analysis of transcriptomes from several hymenopteran species revealed HhV-Tp reads in four species. However, the transmission mechanism and the ecological significance of HhV remain elusive, warranting further studies to illuminate both the transmission process and its capacity for environmental propagation using T. podisi as a potential vector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Chaves VF, Pereira FF, Torres JB, Silva IF, Pastori PL, Oliveira HN, Costa VA, Cardoso CRG (2021) Thermal Requirements of Ooencyrtus submetallicus (Hym.: Encyrtidae) and Telenomus podisi (Hym.: Platygastridae) Parasitizing Euschistus heros Eggs (Hem.: Pentatomidae). Insects 12(10):924. https://doi.org/10.3390/insects12100924

  2. Zerbino MS, Panizzi AR (2019) The underestimated role of pest pentatomid parasitoids in Southern South America. Arth-Plant Int 13(5):703–718. https://doi.org/10.1007/s11829-019-09703-1

    Article  Google Scholar 

  3. McFrederick QS, Thomas JM, Neff JL, Vuong HQ, Russell KA, Hale AR, Mueller UG (2017) Flowers and Wild Megachilid Bees Share Microbes. Microb Ecol 73(1):188–200. https://doi.org/10.1007/s00248-016-0838-1

    Article  PubMed  Google Scholar 

  4. Rothman JA, Loope KJ, McFrederick QS, Wilson Rankin EE (2021) Microbiome of the wasp Vespula pensylvanica in native and invasive populations, and associations with Moku virus. PLoS ONE 16(7):e0255463. https://doi.org/10.1371/journal.pone.0255463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wilson F, Woolcock LT (1960) Temperature Determination of sex in a parthenogenetic parasite. Ooencyrtus submetallicus (Howard) (Hymnopera: Encyrtidae). Aust J Zool 8(2), 153–169. https://doi.org/10.1071/ZO9600153

  6. Zhang J, Zhang F, Gariepy T, Mason P, Gillespie D, Talamasm E, Haye T (2017) Seasonal parasitism and host specificity of Trissolcus japonicus in northern China. J Pest Sci 90(4):1127–1141. https://doi.org/10.1007/s10340-017-0863-y

    Article  Google Scholar 

  7. Queiroz AP, Bueno A. de F, Panizzi AR, Favetti BM, Grande MLM, Luski PGG (2020) Biological characteristics of Trissolcus urichi (Crawford) (Hymenoptera: Scelionidae) on Euschistus heros (Fabricius) and Dichelops melacanthus (Dallas) (Hemiptera: Pentatomidae) Eggs. Sci Rep 10:1–7. https://doi.org/10.1038/s41598-020-69406-z

  8. Bueno AF, Braz ÉC, Favetti BM, França-Neto JB, Silva GV (2020) Release of the egg parasitoid Telenomus podisi to manage the Neotropical Brown Stink Bug, Euschistus heros, in soybean production. Crop Prot 137:105310. https://doi.org/10.1016/j.cropro.2020.105310

    Article  CAS  Google Scholar 

  9. Corrêa-Ferreira BS, Moscardi F (1995) Seasonal Occurrence and Host Spectrum of Egg Parasitoids Associated with Soybean Stink Bugs. Biol Control 5:196–202. https://doi.org/10.1006/bcon.1995.1024

    Article  Google Scholar 

  10. Ahmed MZ, Li SJ, Xue X, Yin XJ, Ren SX, Jiggins FM, Greeff JM, Qiu BL (2015) The intracellular bacterium Wolbachia uses parasitoid wasps as phoretic vectors for efficient horizontal transmission. PLoS Pathog 11(2):e1004672. https://doi.org/10.1371/journal.ppat.1004672

    Article  CAS  PubMed Central  Google Scholar 

  11. Riffel CT, Prando HF, Boff MIC (2010) Primeiro relato de ocorrência de Telenomus podisi (Ashmead) e Trissolcus urichi (Crawford) (Hymenoptera: Scelionidae) como Parasitóides de ovos do Percevejo-do-Colmo-do-Arroz, Tibraca limbativentris (Stål) (Hemiptera: Pentatomidae), em Santa Catarina. Neotrop Entomol 39:447–448. https://doi.org/10.1590/S1519-566X2010000300021

    Article  PubMed  Google Scholar 

  12. Farias PM, Klein JT, Sant’Ana J, Redaelli LR, Grazia J (2012) First records of Glyphepomis adroguensis (Hemiptera, Pentatomidae) and its parasitoid, Telenomus podisi (Hymenoptera, Platygastridae), on irrigated rice fields in Rio Grande do Sul, Brazil. Rev Bras Entomol 56:383-384. https://doi.org/10.1590/S0085-56262012005000044

  13. Ogburn EC, Bessin R, Dieckhoff C, Dobson R, Grieshop M, Hoelmer KA, Mathews C, Moore J, Nielsen AL, Poley K, Pote JM, Rogers M, Welty C, Walgenbach JF (2016) Natural enemy impact on eggs of the invasive brown marmorated stink bug, Halyomorpha halys (Stål) (Hemiptera: Pentatomidae), in organic agroecosystems: A regional assessment. Biol Control 101:39–51. https://doi.org/10.1016/j.biocontrol.2016.06.002

    Article  Google Scholar 

  14. Tillman PG (2016) Diversity of Stink Bug (Hemiptera: Pentatomidae) Egg Parasitoids in Woodland and Crop Habitats in Southwest Georgia, USA. Florida Entomol 99(2):286–291. https://doi.org/10.1653/024.099.0220

    Article  Google Scholar 

  15. Zachrisson B, Grazia J, Polanco P, Osorio P (2017) New reports of host plants of Euchistus nicaraguensis Rolston, 1972 (Heteroptera: Pentatomidae) and natural parasitism of Telenomus podisi Ashmead, 1893 (Hymenoptera: Platygastridae) in the rice agricultural ecosystem in panama. Brazilian J Biol 78:593–594. https://doi.org/10.1590/1519-6984.170740

    Article  Google Scholar 

  16. Melo-Neto AJ, De Souza JR, Santiago CM, Pereira FADS, Lima MH, Wengrat APDS (2020) Primeiro registro de parasitoides de ovos de Oebalus poecilus (Dallas, 1851) (Hemiptera: Pentatomidae) em arroz no Maranhão, Brasil. Entomol Commun 2:2675–1305. https://doi.org/10.37486/2675-1305.ec02032

  17. Silva GV, Bueno ADF, Neves PMOJ, Favetti BM (2018) Biological Characteristics and Parasitism Capacity of Telenomus podisi (Hymenoptera: Platygastridae) on Eggs of Euschistus heros (Hemiptera: Pentatomidae). J Agric Sci 10:210. https://doi.org/10.5539/jas.v10n8p210

    Article  Google Scholar 

  18. Queiroz AP, Taguti EA, Bueno AF, Grandem MLM, Costa CO (2018) Host Preferences of Telenomus podisi (Hymenoptera: Scelionidae): Parasitism on Eggs of Dichelops melacanthus, Euschistus heros, and Podisus nigrispinus (Hemiptera: Pentatomidae). Neotrop Entomol 47(4):543–552. https://doi.org/10.1007/s13744-017-0564-5

    Article  CAS  PubMed  Google Scholar 

  19. Moonga MN, Kamminga K, Davis JA (2018) Status of Stink Bug (Hemiptera: Pentatomidae) Egg Parasitoids in Soybeans in Louisiana. Environ Entomol 47(6):1459–1464. https://doi.org/10.1093/ee/nvy154

    Article  PubMed  Google Scholar 

  20. de Queiroz AP, Bueno ADF, Panizzi AR, Favetti BM (2021) Intrinsic Interspecific Competition Between Telenomus podisi and Trissolcus teretis (Hymenoptera: Scelionidae). Neotrop Entomol 50:453–461. https://doi.org/10.1007/s13744-021-00851-9

    Article  PubMed  Google Scholar 

  21. Grande MLM, de Queiroz AP, Gonçalves J, Hayashida R, Ventura MU, de Freitas Bueno A (2021) Impact of environmental variables on parasitism and emergence of Trichogramma pretiosum, Telenomus remus and Telenomus podisi. Neotrop Entomol 50:605–614. https://doi.org/10.1007/s13744-021-00874-2

    Article  PubMed  Google Scholar 

  22. Tognon R, Sant’Ana J, Zhang QH, Millar JG, Aldrich JR, Zalom FG (2016) Volatiles mediating parasitism of Euschistus conspersus and Halyomorpha halys eggs by Telenomus podisi and Trissolcus erugatus. J Chem Ecol 42:1016-1027. https://doi.org/10.1007/s10886-016-0754-3

  23. Borges M, Costa MLM, Sujii ER, Cavalcanti MDG, Redigolo GF, Resck IS, Vilela EF (1999) Semiochemical and physical stimuli involved in host recognition by Telenomus podisi (Hymenoptera: Scelionidae) toward Euschistus heros (Heteroptera: Pentatomidae). Physiol Entomol 24(3):227–233. https://doi.org/10.1046/j.1365-3032.1999.00136.x

  24. Parra LM, Carvalho JRD, Hoback WW, Oliveira RCD (2023) Optimizing Mass Rearing of the Egg Parasitoid, Telenomus podisi, for Control of the Brown Stink Bug. Euschistus heros Insects 14(5):435. https://doi.org/10.3390/insects14050435

    Article  PubMed  Google Scholar 

  25. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649. https://doi.org/10.1093/bioinformatics/bts199

    Article  PubMed  PubMed Central  Google Scholar 

  26. Söding J, Biegert A, Lupas AN (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33(suppl_2):W244-W248. https://doi.org/10.1093/nar/gki408

  27. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066. https://doi.org/10.1093/nar/gkf436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. https://doi.org/10.1093/nar/25.17.3389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704. https://doi.org/10.1080/10635150390235520

    Article  PubMed  Google Scholar 

  31. Santos ER, Trentin LB, Ecker A, Silva LA, Borges M, Mowery JD, Ribeiro BM, Harrison RL, Ardisson-Araújo DMP (2019) An iflavirus found in stink bugs (Hemiptera: Pentatomidae) of four different species. Virology 534:72–79. https://doi.org/10.1016/j.virol.2019.06.002

    Article  CAS  PubMed  Google Scholar 

  32. Bank S, Sann M, Mayer C, Meusemann K, Donath A, Podsiadlowski L, ... Niehuis O (2017) Transcriptome and target DNA enrichment sequence data provide new insights into the phylogeny of vespid wasps (Hymenoptera: Aculeata: Vespidae). Mol Phylogenet Evol 116:213–226. https://doi.org/10.1016/j.ympev.2017.08.020

  33. Peters RS, Krogmann L, Mayer C, Donath A, Gunkel S, Meusemann K, ... Niehuis O (2017) Evolutionary history of the Hymenoptera. Curr Biol 27(7):1013–1018. https://doi.org/10.1016/j.cub.2017.01.027

  34. Valles SM, Chen Y, Firth AE, Guérin DMA, Hashimoto Y, Herrero S, Miranda JR, Ryabov E (2017) ICTV virus taxonomy profile: Iflaviridae. J Gen Virol 98(4):527. https://doi.org/10.1099/jgv.0.000757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Firth AE, Brierley I (2012) Non-canonical translation in RNA viruses. J Gen Virol 93(7):1385–1409. https://doi.org/10.1099/vir.0.042499-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang H, Chao S, Yan Q, Zhang S, Chen G, Mao C, … Feng G (2024) Genetic diversity of RNA viruses infecting invertebrate pests of rice. Sci China Life Sci 67(1):175–187. https://doi.org/10.1007/s11427-023-2398-y

  37. Liu S, Chen Y, Bonning BC (2015) RNA virus discovery in insects. Curr Opin Insect Sci 8:54–61. https://doi.org/10.1016/j.cois.2014.12.005

    Article  PubMed  Google Scholar 

  38. Thongsripong P, Chandler JA, Kittayapong P, Wilcox BA, Kapan DD, Bennett SN (2021) Metagenomic shotgun sequencing reveals host species as an important driver of virome composition in mosquitoes. Sci Rep 11(1):8448. https://doi.org/10.1038/s41598-021-87122-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Papa G, Abbà S, Galetto L, Parise C, Marzachì C, Negri I (2023) Distribution and prevalence of viral genomes in Italian populations of the invasive brown marmorated stink bug Halyomorpha halys. J Invertebr Pathol 200:107977. https://doi.org/10.1016/j.jip.2023.107977

    Article  CAS  PubMed  Google Scholar 

  40. Sparks ME, Gundersen-Rindal DE, Harrison RL (2013) Complete genome sequence of a novel iflavirus from the transcriptome of Halyomorpha halys, the brown marmorated stink bug. Genome Announc 1(6):e00910-e913. https://doi.org/10.1128/genomeA.00910-13

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lee DH, Short BD, Joseph SV, Bergh JC, Leskey TC (2013) Review of the biology, ecology, and management of Halyomorpha halys (Hemiptera: Pentatomidae) in China, Japan, and the Republic of Korea. Environ Entomol 42(4):627–641. https://doi.org/10.1603/EN13006

    Article  PubMed  Google Scholar 

  42. Costi E, Haye T, Maistrello L (2017) Biological parameters of the invasive brown marmorated stink bug, Halyomorpha halys, in southern Europe. J Pest Sci 90:1059–1067. https://doi.org/10.1007/s10340-017-0899-z

    Article  Google Scholar 

  43. Swevers L, Liu J, Smagghe G (2018) Defense mechanisms against viral infection in Drosophila: RNAi and non-RNAi. Viruses 10(5):230. https://doi.org/10.3390/v10050230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mancini M, Vidal SM (2020) Mechanisms of natural killer cell evasion through viral adaptation. Annu Rev Immunol 38:511–539. https://doi.org/10.1146/annurev-immunol-082619-124440

    Article  CAS  PubMed  Google Scholar 

  45. Webster RG (1997) Influenza virus: transmission between species and relevance to emergence of the next human pandemic. In: Viral Zoonoses and Food of Animal Origin. Springer, Vienna 105–113. https://doi.org/10.1007/978-3-7091-6534-8_11

  46. Whitfield AE, Falk BW, Rotenberg D (2015) Insect vector-mediated transmission of plant viruses. Virology 479:278–289. https://doi.org/10.1016/j.virol.2015.03.026

    Article  CAS  PubMed  Google Scholar 

  47. Jakubowska AK, Murillo R, Carballo A, Williams T, Van Lent JW, Caballero P, Herrero S (2016) Iflavirus increases its infectivity and physical stability in association with baculovirus. PeerJ 4:e1687. https://doi.org/10.7717/peerj.1687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Whitton JL, Cornell CT, Feuer R (2005) Host and virus determinants of picornavirus pathogenesis and tropism. Nat Rev Microbiol 3(10):765–776. https://doi.org/10.1038/nrmicro1284

    Article  CAS  PubMed  Google Scholar 

  49. Chen Y, Evans J, Feldlaufer M (2006) Horizontal and vertical transmission of viruses in the honeybee. Apis mellifera J Invertebr Pathol 92(3):152–159. https://doi.org/10.1016/j.jip.2006.03.010

    Article  PubMed  Google Scholar 

  50. Ribière M, Lallemand P, Iscache AL, Schurr F, Celle O, Blanchard P, Olivier V, Faucon JP (2007) Spread of infectious chronic bee paralysis virus by honeybee (Apis mellifera L.) feces. Appl Environ Microbiol 73(23):7711–7716. https://doi.org/10.1128/AEM.01053-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Singh R, Levitt AL, Rajotte EG, Holmes EC, Ostiguy N, van Engelsdorp D, Lipkin WI, Pamphilis CW, Toth AL, Cox-Foster DL (2010) RNA viruses in hymenopteran pollinators: evidence of inter-taxa virus transmission via pollen and potential impact on non-Apis hymenopteran species. PLoS ONE 5(12):e14357. https://doi.org/10.1371/journal.pone.0014357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nazzi F, Le Conte Y (2016) Ecology of Varroa destructor, the major ectoparasite of the western honey bee, Apis mellifera. Annu Rev Entomol 61:417–432. https://doi.org/10.1146/annurev-ento-010715-023731

    Article  CAS  PubMed  Google Scholar 

  53. Yañez O, Zheng HQ, Hu FL, Neumann P, Dietemann V (2012) A scientific note on Israeli acute paralysis virus infection of Eastern honeybee Apis cerana and vespine predator Vespa velutina. Apidologie 43(5):587–589. https://doi.org/10.1007/s13592-012-0128-y

    Article  Google Scholar 

  54. Garigliany M, Taminiau B, El Agrebi N, Cadar D, Gilliaux G, Hue M, Desmecht D, Daube G, Linden A, Farnir F, Proft M, Saegerman C (2017) Moku virus in invasive Asian hornets, Belgium, 2016. Emerging Infect Dis 23(12):2109. https://doi.org/10.3201/eid2312.171080

    Article  Google Scholar 

  55. Dalmon A, Gayral P, Decante D, Klopp C, Bigot D, Thomasson M, Herniou EA, Alaux C, Le Conte Y (2019) Viruses in the invasive hornet Vespa velutina. Viruses 11(11):1041. https://doi.org/10.3390/v11111041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yang SA, Gayral P, Zhao H, Wu Y, Jiang X, Wu Y, Bigot D, Wang X, Yang D, Herniou EA, Deng S, Li F, Diao Q, Darrouzet E, Hou C (2019) Occurrence and molecular phylogeny of honey bee viruses in Vespids. Viruses 12(1):6. https://doi.org/10.3390/v12010006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Loope KJ, Baty JW, Lester PJ, Wilson Rankin EE (2019) Pathogen shifts in a honeybee predator following the arrival of the Varroa mite. Proc R Soc B Biol Sci 286(1894):20182499. https://doi.org/10.1098/rspb.2018.2499

    Article  CAS  Google Scholar 

  58. Tillman G (2017) Ecosystem-based incorporation of nectar-producing plants for stink bug parasitoids. Insects 8(3):65. https://doi.org/10.3390/insects8030065

    Article  PubMed  PubMed Central  Google Scholar 

  59. Brettell LE, Schroeder DC, Martin SJ (2020) RNAseq of deformed wing virus and other honey bee-associated viruses in eight insect taxa with or without varroa infestation. Viruses 12(11):1229. https://doi.org/10.3390/v12111229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lüthi MN, Vorburger C, Dennis AB (2020) A novel RNA virus in the parasitoid wasp Lysiphlebus fabarum: Genomic structure, prevalence, and transmission. Viruses 12(1):59. https://doi.org/10.3390/v12010059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dheilly NM, Maure F, Ravallec M, Galinier R, Doyon J, Duval D, Leger L, Volkoff AN, Missé D, Nidelet S, Demolombe V, Brodeur J, Gourbal B, Thomas F, Mitta G (2015) Who is the puppet master? Replication of a parasitic wasp-associated virus correlates with host behaviour manipulation. Proc R Soc B Biol Sci 282(1803):20142773. https://doi.org/10.1098/rspb.2014.2773

    Article  Google Scholar 

  62. Bigot Y, Rabouille A, Doury G, Sizaret PY, Delbost F, Hamelin MH, Periquet G (1997) Biological and molecular features of the relationships between Diadromus pulchellus ascovirus, a parasitoid hymenopteran wasp (Diadromus pulchellus) and its lepidopteran host. Acrolepiopsis assectella J Gen Virol 78(5):1149–1163. https://doi.org/10.1099/0022-1317-78-5-1149

    Article  CAS  PubMed  Google Scholar 

  63. Corrêa-Ferreira BS, Panizzi AR (1999) Percevejos da soja e seu manejo. Embrapa Soja-Circular Técnica (INFOTECA-E) 24:1–45

  64. Parra JRP (2002) Criação massal de inimigos naturais. Controle biológico no Brasil: parasitóides e predadores São Paulo: Manole 143–161

  65. Silva GV, Bueno ADF, Neves PMOJ, Favetti BM (2018) Biological characteristics and parasitism capacity of Telenomus podisi (Hymenoptera: Platygastridae) on eggs of Euschistus heros (Hemiptera: Pentatomidae). J Agric Sci 10:8. https://doi.org/10.5539/jas.v10n8p210

    Article  Google Scholar 

  66. Cheng XW, Wan XF, Xue J, Moore RC (2007) Ascovirus and its evolution Virol Sin 22(2):137–147. https://doi.org/10.1007/s12250-007-0015-2

    Article  CAS  Google Scholar 

  67. Coffman KA, Hankinson QM, Burke GR (2022) A viral mutualist employs posthatch transmission for vertical and horizontal spread among parasitoid wasps. PNAS 119(16):e2120048119. https://doi.org/10.1073/pnas.2120048119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Caldas-Garcia GB, Santos VC, Fonseca PLC, de Almeida JPP, Costa MA, Aguiar ERGR (2023) The Viromes of Six Ecosystem Service Provider Parasitoid Wasps. Viruses. 15(12):2448. https://doi.org/10.3390/v15122448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, grant number 303479/2022–1) and Fundação de Apoio à Pesquisa do Distrito Federal (FAPDF, grant number 00193.00001750/2022–66).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel M. P. Ardisson-Araújo.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Responsible Editor: Jônatas Abrahão

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

42770_2024_1340_MOESM1_ESM.tif

Supplementary file1 (TIF 18360 KB) Figure S1. ML phylogenetic inference of the evolutionary relationship among Halyopmorpha halys virus (HhV) isolates to other iflaviruses, dicistroviruses, and secoviruses. Members of Secoviridae were used to root the tree. The tree was colored in relation to the taxonomic order of the host. The iflaviruses found in insectivores were painted yellow and those with unknown host are black

Supplementary file2 (XLSX 16 KB)

Supplementary file3 (XLSX 31 KB)

Supplementary file4 (XLSX 15 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, E.R., de Camargo, B.R., da Silva, L.A. et al. The multispecies stinkbug iflavirus Halyomorpha halys virus detected in the multispecies stinkbug egg parasitoid microwasp, Telenomus podisi (Ashmead) (Hymenoptera: Platygastridae). Braz J Microbiol (2024). https://doi.org/10.1007/s42770-024-01340-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42770-024-01340-y

Keywords

Navigation