Skip to main content
Log in

Characterization of a symbiotic beverage based on water-soluble soybean extract fermented by Lactiplantibacillus plantarum ATCC 8014

  • Food Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The health benefits of functional foods are associated with consumer interest and have supported the growth of the market for these types of foods, with emphasis on the development of new formulations based on plant extracts. Therefore, the present study aimed to characterize a symbiotic preparation based on water-soluble soy extract, supplemented with inulin and xylitol and fermented by Lactiplantibacillus plantarum ATCC 8014. Regarding nutritional issues, the symbiotic formulation can be considered a source of fiber (2 g/100 mL) and proteins (2.6 g/100 mL), and it also has a low-fat content and low caloric value. This formulation, in terms of microbiological aspects, remained adequate to legal standards after storage for 60 days under refrigeration and also presented an adequate quantity of the aforementioned probiotic strain, corresponding to 9.11 Log CFU.mL−1. These viable L. plantarum cells proved to be resistant to simulated human gastrointestinal tract conditions, reaching the intestine at high cell concentrations of 7.95 Log CFU.mL−1 after 60 days of refrigeration. Regarding sensory evaluation, the formulation showed good acceptance, presenting an average overall impression score of 6.98, 5.98, and 5.16, for control samples stored for 30 and 60 days under refrigeration, respectively. These results demonstrate that water-soluble soy extract is a suitable matrix for fermentation involving L. plantarum ATCC 8014, supporting and providing data on the first steps towards the development of a symbiotic functional food, targeting consumers who have restrictions regarding the consumption of products of animal origin, diabetics, and individuals under calorie restrictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Martirosyan D, Liufu J (2020) FFC’s advancement of the establishment of functional food science. Funct Foods Heal Dis 10(8):344–356. https://doi.org/10.31989/ffhd.v10i8.729

    Article  Google Scholar 

  2. Nguyen N, Nguyen HV, Nguyen PT et al (2019) Some key factors affecting consumers’ intentions to purchase functional foods: a case study of functional yogurts in Vietnam. Foods 2020 9(1):24. https://doi.org/10.3390/FOODS9010024

    Article  Google Scholar 

  3. Kareb O, Aïder M (2019) Whey and its derivatives for probiotics, prebiotics, synbiotics, and functional foods: a critical review. Probiotics Antimicrob Proteins 11(2):348–369. https://doi.org/10.1007/s12602-018-9427-6

    Article  CAS  PubMed  Google Scholar 

  4. Kumar S, Rattu G, Mitharwal S et al (2022) Trends in non-dairy-based probiotic food products: advances and challenges. J Food Process Preserv 46(9):e16578. https://doi.org/10.1111/JFPP.16578

    Article  CAS  Google Scholar 

  5. Lebaka VR, Wee YJ, Narala VR, Joshi VK (2018) Development of new probiotic foods—a case study on probiotic juices. Ther Probiotic Unconv Foods:55–78. https://doi.org/10.1016/B978-0-12-814625-5.00004-2. (Published online January 1)

  6. Pimentel TC, Costa WKA da, Barão CE, Rosset M, Magnani M (2021) Vegan probiotic products: a modern tendency or the newest challenge in functional foods. Food Res Int 140(December 2020). https://doi.org/10.1016/j.foodres.2020.110033

  7. Garcia-Gonzalez N, Battista N, Prete R, Corsetti A (2021) Health-promoting role of Lactiplantibacillus plantarum isolated from fermented foods. Microorganisms 9(2):1–30. https://doi.org/10.3390/microorganisms9020349

    Article  CAS  Google Scholar 

  8. Liang X, Lv Y, Zhang Z et al (2020) Study on intestinal survival and cholesterol metabolism of probiotics. LWT 124:109132. https://doi.org/10.1016/J.LWT.2020.109132

    Article  CAS  Google Scholar 

  9. Seddik HA, Bendali F, Gancel F, Fliss I, Spano G, Drider D (2017) Lactobacillus plantarum and its probiotic and food potentialities. Probiotics Antimicrob Proteins 9(2):111–122. https://doi.org/10.1007/s12602-017-9264-z

    Article  PubMed  Google Scholar 

  10. Yang KM, Jiang ZY, Zheng CT, Wang L, Yang XF (2014) Effect of Lactobacillus plantarum on diarrhea and intestinal barrier function of young piglets challenged with enterotoxigenic Escherichia coli K881. J Anim Sci 92(4):1496–1503. https://doi.org/10.2527/jas.2013-6619

    Article  CAS  PubMed  Google Scholar 

  11. Liu YW, Liong MT, Tsai YC (2018) New perspectives of Lactobacillus plantarum as a probiotic: the gut-heart-brain axis. J Microbiol 56(9):601–613. https://doi.org/10.1007/S12275-018-8079-2

    Article  PubMed  Google Scholar 

  12. Chuah LO, Foo HL, Loh TC et al (2019) Postbiotic metabolites produced by Lactobacillus plantarum strains exert selective cytotoxicity effects on cancer cells. BMC Complement Altern Med 19(1):1–12. https://doi.org/10.1186/S12906-019-2528-2/TABLES/3

    Article  CAS  Google Scholar 

  13. B Fred BE, Peterson WH, Anderson JA (1921) The characteristics of certain pentose-de-storying bacteria, especially as concerns their action on arabinose and xylose. J Biol Chem 48(2):85–412. https://doi.org/10.1016/S0021-9258(18)86020-3

  14. De Kivit S, Kraneveld AD, Garssen J, Willemsen LEM (2011) Glycan recognition at the interface of the intestinal immune system: target for immune modulation via dietary components. Eur J Pharmacol 668:S124–S132. https://doi.org/10.1016/j.ejphar.2011.05.086. (Elsevier)

    Article  CAS  PubMed  Google Scholar 

  15. Wan X, Guo H, Liang Y et al (2020) The physiological functions and pharmaceutical applications of inulin: a review. Carbohydr Polym 246:116589. https://doi.org/10.1016/J.CARBPOL.2020.116589

    Article  CAS  PubMed  Google Scholar 

  16. GasmiBenahmed A, Gasmi A, Arshad M et al (2020) Health benefits of xylitol. Appl Microbiol Biotechnol 104(17):7225–7237. https://doi.org/10.1007/s00253-020-10708-7

    Article  CAS  Google Scholar 

  17. Rice T, Zannini E, Arendt EK, Coffey A (2020) A review of polyols - biotechnological production, food applications, regulation, labeling and health effects. Crit Rev Food Sci Nutr 60(12):2034–2051. https://doi.org/10.1080/10408398.2019.1625859

    Article  PubMed  Google Scholar 

  18. Rätsep M, Kõljalg S, Sepp E et al (2017) A combination of the probiotic and prebiotic product can prevent the germination of Clostridium difficile spores and infection. Anaerobe 47:94–103. https://doi.org/10.1016/j.anaerobe.2017.03.019

    Article  CAS  PubMed  Google Scholar 

  19. Gu Q, Zhang C, Song D, Li P, Zhu X (2015) Enhancing vitamin B12 content in soy-yogurt by Lactobacillus reuteri. Int J Food Microbiol 206:56–59. https://doi.org/10.1016/j.ijfoodmicro.2015.04.033

    Article  CAS  PubMed  Google Scholar 

  20. Hu D, Wu J, Jin L et al (2021) Evaluation of Pediococcus pentosaceus strains as probiotic adjunct cultures for soybean milk post-fermentation. Food Res Int 148:110570. https://doi.org/10.1016/J.FOODRES.2021.110570

    Article  CAS  PubMed  Google Scholar 

  21. FAOSTAT. Soybean production in Brazil Harvest 2022/23. https://www.fao.org/faostat/en/#data/QCL. Accessed 14 Jan 2024

  22. Liu W, Lou H, Ritzoulis C et al (2019) Structural characterization of soybean milk particles during in vitro digestive/non-digestive simulation. LWT 108:326–331. https://doi.org/10.1016/J.LWT.2019.03.086

    Article  CAS  Google Scholar 

  23. Singh BP, Vij S (2017) α-Galactosidase activity and oligosaccharides reduction pattern of indigenous lactobacilli during fermentation of soy milk. Food Biosci 2018(22):32–37. https://doi.org/10.1016/j.fbio.2018.01.002

    Article  CAS  Google Scholar 

  24. Ahsan S, Khaliq A, Chughtai MFJ et al (2020) Functional exploration of bioactive moieties of fermented and non-fermented soy milk with reference to nutritional attributesax. J Microbiol Biotechnol Food Sci 10(1):145–149. https://doi.org/10.15414/jmbfs.2020.10.1.145-149

    Article  CAS  Google Scholar 

  25. FAO/WHO. Guidelines for the evaluation of probiotics in food. Published online 2002:1–11

  26. Rosolen MD, Bordini FW, de Oliveira PD et al (2019) Symbiotic microencapsulation of Lactococcus lactis subsp. lactis R7 using whey and inulin by spray drying. LWT 115. https://doi.org/10.1016/j.lwt.2019.108411

  27. Telang AM, Thorat BN (2010) Optimization of process parameters for spray drying of fermented soy milk. Dry Technol 28(12):1445–1456. https://doi.org/10.1080/07373937.2010.482694

    Article  CAS  Google Scholar 

  28. Brazil, Ministério da Saúde (2022) INSTRUÇÃO NORMATIVA - IN No 161, DE 1° DE JULHO DE 2022 (Publicada. Vol DOU n° 126). https://antigo.anvisa.gov.br/documents/10181/2718376/IN_161_2022_.pdf/b08d70cb-add6-47e3-a5d3-fa317c2d54b2. Accessed 10 Nov 2022

  29. American Public Health Association. Compend Methods Microbiol Exam Foods. Published online August 2015. https://doi.org/10.2105/MBEF.0222

  30. ISO 6579:2002/Amd 1:2007 - Microbiology of food and animal feeding stuffs — Horizontal method for the detection of Salmonella spp. — amendment 1: annex D: detection of Salmonella spp. in animal faeces and in environmental samples from the primary production stage. https://www.iso.org/standard/42109.html. Accessed 14 Nov 2022

  31. ISO 7932:2004 - Microbiology of food and animal feeding stuffs — horizontal method for the enumeration of presumptive Bacillus cereus — colony-count technique at 30 degrees C. https://www.iso.org/standard/38219.html. Accessed 23 Nov 2023

  32. ANVISA. RESOLUÇÃO DA DIRETORIA COLEGIADA - RDC No 729, DE 1° DE JULHO DE 2022.; (Publicada. Vol DOU n° 126.; 2022). http://antigo.anvisa.gov.br/documents/10181/2718376/RDC_729_2022_.pdf/249178d4-7733-4fcd-a6db-03d08aad204f. Accessed 10 Set 2022

  33. ANVISA. INSTRUÇÃO NORMATIVA-IN No 75, DE 8 DE OUTUBRO DE 2020 - INSTRUÇÃO NORMATIVA-IN No 75, DE 8 DE OUTUBRO DE 2020 - DOU - Imprensa Nacional.; 2020. https://www.in.gov.br/en/web/dou/-/instrucao-normativa-in-n-75-de-8-de-outubro-de-2020-282071143. Accessed 19 Oct 2022

  34. De Castro-Cislaghi FP, Silva CDRE, Fritzen-Freire CB, Lorenz JG, Sant’Anna ES (2012) Bifidobacterium Bb-12 microencapsulated by spray drying with whey: survival under simulated gastrointestinal conditions, tolerance to NaCl, and viability during storage. J Food Eng 113(2):186–193. https://doi.org/10.1016/j.jfoodeng.2012.06.006

    Article  CAS  Google Scholar 

  35. Zhu YY, Thakur K, Feng JY et al (2020) Riboflavin-overproducing lactobacilli for the enrichment of fermented soymilk: insights into improved nutritional and functional attributes. Appl Microbiol Biotechnol 104(13):5759–5772. https://doi.org/10.1007/S00253-020-10649-1

    Article  CAS  PubMed  Google Scholar 

  36. Instituto Adolpho Lutz (IAL) (2008) 1a Edição Digital. Métodos físicos-quimicos para análise de Alimentos, 9. pp 453–460

  37. Rosolen MD, Bordini FW, da Luz GdeQ et al (2022) Survival of microencapsulated lactococcus lactis Subsp lactis R7 applied in different food matrices. Appl Biochem Biotechnol 194(5):2135–2150. https://doi.org/10.1007/s12010-022-03804-z

    Article  CAS  PubMed  Google Scholar 

  38. Šertović E, Sarić Z, Barać M, Barukčić I, Kostić A, Božanić R (2019) Physical, chemical, microbiological and sensory characteristics of a probiotic beverage produced from different mixtures of cow’s milk and soy beverage by lactobacillus acidophilus La5 and yoghurt culture. Food Technol Biotechnol 57(4):461. https://doi.org/10.17113/FTB.57.04.19.6344

    Article  PubMed  PubMed Central  Google Scholar 

  39. Nunes RM (2011) Cultivares de soja e farinha mista de soja e milho e análise proteômica da soja. Thesis, Federal University of Viçosa.

  40. Peng QH, Cheng L, Kang K et al (2020) Effects of yeast and yeast cell wall polysaccharides supplementation on beef cattle growth performance, rumen microbial populations and lipopolysaccharides production. J Integr Agric 19(3):810–819. https://doi.org/10.1016/S2095-3119(19)62708-5

    Article  CAS  Google Scholar 

  41. Granato D, Branco GF, Nazzaro F, Faria AF, Cruz AG (2010) Functional foods and nondairy probiotic food development: trends,concepts, and products. Compr rev food sci food saf 9. https://ift.onlinelibrary.wiley.com/doi/10.1111/j.1541-4337.2010.00110.x. Accessed 10 Oct 2022

  42. Hati S, Patel M, Mishra BK, Das S (2019) Short-chain fatty acid and vitamin production potentials of Lactobacillus isolated from fermented foods of Khasi Tribes, Meghalaya, India. Ann Microbiol 69(11):1191–1199. https://doi.org/10.1007/s13213-019-01500-8

    Article  CAS  Google Scholar 

  43. Egea MB, Gomes ACG, de Lima MS, Takeuchi KP (2019) Relação entre as características físico-químicas e reológica e o valor comercial de iogurte integral com sabor morango. Segur Aliment Nutr 26(64):e019003. https://doi.org/10.20396/san.v26i0.8652948

    Article  Google Scholar 

  44. Puolanne E, Halonen M. Theoretical aspects of water-holding in meat. MESC. Published online 2010. https://doi.org/10.1016/j.meatsci.2010.04.038

  45. Jayarathna S, Priyashantha H, Johansson M, Vidanarachchi JK, Jayawardana BC, Liyanage R (2021) Probiotic enriched fermented soy-gel as a vegan substitute for dairy yoghurt. (April 2020):1-10. https://doi.org/10.1111/jfpp.15092

  46. Ribeiro JES, Sant’ana AM da S, da Silva FLH, Beltrão Filho EM (2023) Use of water-soluble soy extract and inulin as ingredients to produce a fermented dairy beverage made from caprine milk. Food Sci Technol 43:1–8. https://doi.org/10.1590/fst.102122

    Article  Google Scholar 

  47. Hongyu K, Jorge G, Junior DO (2015) Análise de Componentes Principais : resumo teórico , aplicação e interpretação Principal component analysis : theory , interpretations and applications. 1:83-90. https://doi.org/10.18607/ES20165053

  48. Lucey JA (2004) Cultured dairy products: an overview of their gelation and texture properties. Int J Dairy Technol 57(2–3):77–84. https://doi.org/10.1111/j.1471-0307.2004.00142.x

    Article  CAS  Google Scholar 

  49. Rasika D, Vidanarachchi JK, Rocha RS et al. ScienceDirect plant-based milk substitutes as emerging probiotic carriers. 8–20. https://doi.org/10.1016/j.cofs.2020.10.025. (Published online 2021)

  50. Baú TR, Garcia S, Ida EI (2014) Evaluation of a functional soy product with addition of soy fiber and fermented with probiotic Kefir culture. 57(3):402–409. https://doi.org/10.1590/S1516-89132014005000005

  51. Brazil. Ministry of agriculture, livestock and supply. Normative Instruction No. 46, of the 23rd of October 2007. Technical regulation of the identity and quality of fermented milks. Federal Register for the Federative Republic of Brazil, Brasília, 10/24/2007, Section "Introduction"; 2007; p 4. https://www.cidasc.sc.gov.br/inspecao/files/2019/09/INSTRU%C3%87%C3%83O-NORMATIVA-N-46-de-23-de-outubro-de-2007-Leites-Fermentados.pdf. Accessed 22 Jul 2022

  52. Içier F, Gündüz GT, Yilmaz B, Memeli Z (2015) Changes on some quality characteristics of fermented soy milk beverage with added apple juice. LWT - Food Sci Technol 63(1):57–64. https://doi.org/10.1016/J.LWT.2015.03.102

    Article  Google Scholar 

  53. Iraporda C, Rubel I, Managó N, Manrique G. Garrote, Abrahan A (2022) Inulin addition improved probiotic survival in soy-based fermented beverage. World J Microbiol Biotechnol 38:133. https://doi.org/10.1007/s11274-022-03322-4

    Article  CAS  PubMed  Google Scholar 

  54. Vieira Garcia R, Raphaela Gonçalves de Farias L, Lima AR do C (2012) Estudo de rótulos de leite fermentado comercializados no município João Pessoa, PB. Rev Verde Agroecol Desenvolv Sustentável 7(1):47. (ISSN-e 1981–8203). https://dialnet.unirioja.es/servlet/articulo?codigo=7410346&info=resumen&idioma=ENG. Accessed 2 Nov 2022

  55. Yeo SK, Liong MT (2010) Effect of prebiotics on viability and growth characteristics of probiotics in soymilk. J Sci Food Agric 90(2):267–275. https://doi.org/10.1002/JSFA.3808

    Article  CAS  PubMed  Google Scholar 

  56. Pushpadass HA, Magdaline Eljeeva Emerald F, Balasubramanyam BV, Patel SS (2019) Rheological properties of milk-based beverages. Elsevier Inc. https://doi.org/10.1016/B978-0-12-815504-2.00011-6

  57. Öztürk Hİ, Aydın S, Sözeri D, Demirci T, Sert D, Akın N (2018) Fortification of set-type yoghurts with Elaeagnus angustifolia L. flours: effects on physicochemical, textural, and microstructural characteristics. LWT 90(December 2017):620–626. https://doi.org/10.1016/j.lwt.2018.01.012

    Article  CAS  Google Scholar 

  58. Atalar I (2019) Functional kefir production from high pressure homogenized hazelnut milk. LWT 107(March):256–263. https://doi.org/10.1016/j.lwt.2019.03.013

    Article  CAS  Google Scholar 

  59. Cavallini DCU, Rossi EA (2009) Soy yogurt fortified with iron and calcium stability during the storage. Alim Nutr 20(1):7–13

    CAS  Google Scholar 

  60. Csatlos NI, Simon E, Teleky BE et al (2023) Development of a fermented beverage with Chlorella vulgaris powder on soybean-based fermented beverage. Biomolecules 13(2):245. https://doi.org/10.3390/BIOM13020245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Piazentin ACM, da Silva TMS, Florence-Franco AC, Bedani R, Converti A, de Souza Oliveira RP (2020) Soymilk fermentation: effect of cooling protocol on cell viability during storage and in vitro gastrointestinal stress. Braz J Microbiol 51(4):1645–1654. https://doi.org/10.1007/S42770-020-00369-Z/FIGURES/3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Marin M, Madruga NDEA, Da R, Rodrigues S, Ribeiro M, Machado G. Bebida probiótica de soja. Published online 2014:93–104

  63. Ferragut V, Cruz NS, Trujillo A, Guamis B, Capellas M (2009) Physical characteristics during storage of soy yogurt made from ultra-high pressure homogenized soymilk. J Food Eng 92(1):63–69. https://doi.org/10.1016/j.jfoodeng.2008.10.026

    Article  Google Scholar 

  64. Motta RG, Lodete AR, Martins LSA, Santos PA (2017) Bebida fermentada a base de soja com sabor de ameixa e suplementada com inulina em substituição ao iogurte tradicional. Vet Zootec 24(4):724–733. https://doi.org/10.35172/rvz.2017.v24.243

  65. Deehan EC, Yang C, Perez-Muñoz ME et al (2020) Precision microbiome modulation with discrete dietary fiber structures directs short-chain fatty acid production. Cell Host Microbe 27(3):389-404.e6. https://doi.org/10.1016/j.chom.2020.01.006

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors also thank the Brazilian agencies for their financial support: CNPq—Conselho Nacional de Desenvolvimento Científco e Tecnológico and FAPESP- Fundação de Apoio à Pesquisa de São Paulo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria das Graças de Almeida Felipe.

Ethics declarations

Conflicts of interest

The authors confirm that they have no conflicts of interest in the work described in this manuscript.

Additional information

Responsible Editor: Luis Augusto Nero

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bordini, F.W., Fernandes, J.C., de Souza, V.L.C. et al. Characterization of a symbiotic beverage based on water-soluble soybean extract fermented by Lactiplantibacillus plantarum ATCC 8014. Braz J Microbiol (2024). https://doi.org/10.1007/s42770-024-01330-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42770-024-01330-0

Keywords

Navigation