Skip to main content
Log in

Genetic determinants of antimicrobial resistance in polymyxin B resistant Pseudomonas aeruginosa isolated from airways of patients with cystic fibrosis

  • Clinical Microbiology – Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Pseudomonas aeruginosa is the main pathogen associated with pulmonary exacerbation in patients with cystic fibrosis (CF). CF is a multisystemic genetic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator gene, which mainly affects pulmonary function. P. aeruginosa isolated from individuals with CF in Brazil is not commonly associated with multidrug resistance (MDR), especially when compared to global occurrence, where the presence of epidemic clones, capable of expressing resistance to several drugs, is often reported. Due to the recent observations of MDR isolates of P. aeruginosa in our centers, combined with these characteristics, whole-genome sequencing was employed for analyses related to antimicrobial resistance, plasmid identification, search for phages, and characterization of CF clones. All isolates in this study were polymyxin B resistant, exhibiting diverse mutations and reduced susceptibility to carbapenems. Alterations in mexZ can result in the overexpression of the MexXY efflux pump. Mutations in oprD, pmrB, parS, gyrA and parC may confer reduced susceptibility to antimicrobials by affecting permeability, as observed in phenotypic tests. The phage findings led to the assumption of horizontal genetic transfer, implicating dissemination between P. aeruginosa isolates. New sequence types were described, and none of the isolates showed an association with epidemic CF clones. Analysis of the genetic context of P. aeruginosa resistance to polymyxin B allowed us to understand the different mechanisms of resistance to antimicrobials, in addition to subsidizing the understanding of possible relationships with epidemic strains that circulate among individuals with CF observed in other countries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Mielko KA, Jabłoński SJ, Milczewska J, Sands D, Łukaszewicz M, Młynarz P (2019) Metabolomic studies of Pseudomonas aeruginosa. World J Microbiol Biotechnol 35:178. https://doi.org/10.1007/s11274-019-2739-1

    Article  PubMed  PubMed Central  Google Scholar 

  2. Goss CH (2019) Acute pulmonary exacerbation in cystic fibrosis. Semin Respir Crit Care Med 40:792–803. https://doi.org/10.1055/s-0039-1697975

    Article  PubMed  PubMed Central  Google Scholar 

  3. Rojas LJ, Yasmin M, Benjamino J et al (2022) Genomic heterogeneity underlies multidrug resistance in Pseudomonas aeruginosa: a population-level analysis beyond susceptibility testing. PLoS ONE 17:e0265129. https://doi.org/10.1371/journal.pone.0265129

    Article  PubMed  PubMed Central  Google Scholar 

  4. Reyne N, McCarron A, Cmielewski P, Parsons D, Donnelley M (2023) To bead or not to bead: a review of Pseudomonas aeruginosa lung infection models for cystic fibrosis. Front Physiol 14:1104856. https://doi.org/10.3389/fphys.2023.1104856

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bassetti M, Vena A, Croxatto A, Righi E, Guery B (2018) How to manage Pseudomonas aeruginosa infections. Drugs Context 7:212527. https://doi.org/10.7573/dic.212527

    Article  PubMed  PubMed Central  Google Scholar 

  6. Subedi D, Vijay AK, Wilcox M (2018) Overview of mechanisms of antibiotic resistance in Pseudomonas aeruginosa: an ocular perspective. Clin Exp Optom 101:162–171. https://doi.org/10.1111/cxo.12621

    Article  PubMed  Google Scholar 

  7. Gniadek TJ, Carroll KC, Simner PJ (2016) Carbapenem-resistant non-glucose-fermenting gram-negative bacilli: the missing piece to the puzzle. J Clin Microbiol 54:1700–1710. https://doi.org/10.1128/JCM.03264-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pang Z, Raudonis R, Glick BR, Lin T, Cheng Z (2019) Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv 37:177–192. https://doi.org/10.1016/j.biotechadv.2018.11.013

    Article  CAS  PubMed  Google Scholar 

  9. Olaitan AO, Morand S, Rolain J (2014) Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria. Front Microbiol 5:643. https://doi.org/10.3389/fmicb.2014.00643

    Article  PubMed  PubMed Central  Google Scholar 

  10. Scott A, Pottenger S, Timofte D et al (2019) Reservoirs of resistance: polymyxin resistance in veterinary-associated companion animal isolates of Pseudomonas aeruginosa. Vet Rec 185:206. https://doi.org/10.1136/vr.105075

    Article  PubMed  Google Scholar 

  11. Tahmasebi H, Dehbashi S, Arabestani MR (2019) New approach to identify colistin-resistant Pseudomonas aeruginosa by high-resolution melting curve analysis assay. Lett Appl Microbiol 70:290–299. https://doi.org/10.1111/lam.13270

    Article  CAS  Google Scholar 

  12. Williams D, Fothergill JL, Evans B et al (2018) Transmission and lineage displacement drive rapid population genomic flux in cystic fibrosis airway infections of a Pseudomonas aeruginosa epidemic strain. Microb Genom 4:e000167. https://doi.org/10.1099/mgen.0.000167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cheng K, Smyth RL, Govan JR et al (1996) Spread of β-lactam-resistant Pseudomonas aeruginosa in a cystic fibrosis clinic. Lancet 348:639–642. https://doi.org/10.1016/S0140-6736(96)05169-0

    Article  CAS  PubMed  Google Scholar 

  14. Parkins MD, Somayaji R, Waters VJ (2018) Epidemiology, biology, and impact of clonal Pseudomonas aeruginosa infections in cystic fibrosis. Clin Microbiol Rev 31:e00019–e00018. https://doi.org/10.1128/CMR.00019-18

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lees JA, Kendall M, Parkhill J, Colijn C, Bentley SD, Harris SR (2018) Evaluation of phylogenetic reconstruction methods using bacterial whole genomes: a simulation based study. Wellcome Open Res 3:33. https://doi.org/10.12688/wellcomeopenres.14265.2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bogaerts B, Winand R, Braekel JV et al (2021) Evaluation of WGS performance for bacterial pathogen characterization with the Illumina technology optimized for time-critical situatuions. Microb Genom 7:000699. https://doi.org/10.1099/mgen.0.000699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Almeida MM, Freitas MT, Folescu TW et al (2021) Carbapenem-resistant Pseudomonas aeruginosa in chronic lung infection: current resistance profile and hypermutability in patients with cystic fibrosis. Curr Microbiol 78:696–704. https://doi.org/10.1007/s00284-020-02337-0

    Article  CAS  PubMed  Google Scholar 

  18. Miller JM, Binnicker MJ, Campbell S et al (2018) A guide to utilization of the microbiology laboratory for diagnosis of infectious diseases: 2018 update by the Infectious Diseases Society of America and the American Society for Microbiology. Clin Infect Dis 67:e1–e94. https://doi.org/10.1093/cid/ciy381

    Article  PubMed  Google Scholar 

  19. Clinical and Laboratory Standards Institute (CLSI) (2023) Performance standards for antimicrobial susceptibility testing. M100, 33rd edn. Clinical and Laboratory Standards Institute, Wayne, PA

    Google Scholar 

  20. Clinical and Laboratory Standards Institute (CLSI) (2018) Performance standards for antimicrobial susceptibility tests for bacteria that grow aerobically. M07-A10, 11th edn. Clinical and Laboratory Standards Institute, Wayne, PA

    Google Scholar 

  21. Magiorakos AP, Srinivasan A, Carey RB et al (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18:268–281. https://doi.org/10.1111/j.1469-0691.2011.03570.x

    Article  CAS  PubMed  Google Scholar 

  22. Wick RR, Judd LM, Gorrie CL, Holt KE (2017) Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 13:e1005595. https://doi.org/10.1371/journal.pcbi.1005595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Antipov D, Hartwick N, Shen M, Raiko M, Lapidus A, Pevzner P (2016) PlasmidSPAdes: assembling plasmids from whole genome sequencing data. Bioinformatics 32:3380–3387. https://doi.org/10.1093/bioinformatics/btw493

    Article  CAS  PubMed  Google Scholar 

  24. Schwengers O, Jelonek L, Dieckmann MA, Beyvers S, Blom J, Goesmann A (2021) Bakta: rapid and standardized annotation of bacterial genomes via alignment-free sequence identification. Microb Genom 7:000685. https://doi.org/10.1099/mgen.0.000685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Arndt D, Grant JR, Marcu A et al (2016) PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 44:W16–21. https://doi.org/10.1093/nar/gkw387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhou Z, Alikhan N, Sergeant MJ et al (2018) GrapeTree: visualization of core genomic relationships among 100,000 bacterial pathogens. Genome Res 28:1395–1404. https://doi.org/10.1101/gr.232397.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Reece E, Bettio PH, Renwick J (2021) Polymicrobial interactions in the cystic fibrosis airway microbiome impact the antimicrobial susceptibility of Pseudomonas aeruginosa. Antibiot (Basel) 10:827. https://doi.org/10.3390/antibiotics10070827

    Article  CAS  Google Scholar 

  28. Laborda P, Hernando-Amado S, Martínez JL, Sanz-García F (2022) Antibiotic resistance in Pseudomonas. Adv Exp Med Biol 1386:117–143. https://doi.org/10.1007/978-3-031-08491-1_5

    Article  CAS  PubMed  Google Scholar 

  29. Saadh MJ, Lohrasbi A, Ghasemian E et al (2022) The status of carbapenem resistance in cystic fibrosis: a systematic review and meta-analysis. Yale J Biol Med 95:495–506

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Courtois N, Caspar Y, Maurin M (2018) Phenotypic and genetic resistance traits of Pseudomonas aeruginosa strains infecting cystic fibrosis patients: a French cohort study. Int J Antimicrob Agents 52:358–364. https://doi.org/10.1016/j.ijantimicag.2018.05.008

    Article  CAS  PubMed  Google Scholar 

  31. Zamudio R, Hijazi K, Joshi C, Aitken E, Oggioni M, Gould IM (2019) Phylogenetic analysis of resistance to ceftazidime/avibactam, ceftolozane/tazobactam and carbapenems in piperacillin/tazobactam-resistant Pseudomonas aeruginosa from cystic fibrosis patients. Int J Antimicrob Agents 53:774–780. https://doi.org/10.1016/j.ijantimicag.2019.02.022

    Article  CAS  PubMed  Google Scholar 

  32. Sherrard LJ, Wee BA, Duplancic C et al (2022) Emergence and impact of oprD mutations in Pseudomonas aeruginosa strains in cystic fibrosis. J Cyst Fibros. 21, e-35-e43. https://doi.org/10.1016/j.jcf.2021.03.007

  33. Lutz L, Leão RS, Ferreira AG et al (2013) Hypermutable Pseudomonas aeruginosa in cystic fibrosis patients from two Brazilian cities. J Clin Microbiol 51:927–930. https://doi.org/10.1128/JCM.02638-12

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ferreira AG, Leão RS, Carvalho-Assef AP et al (2015) Low-level resistance and clonal diversity of Pseudomonas aeruginosa among chronically colonized cystic fibrosis patients. APMIS 123:1061–1068. https://doi.org/10.1111/apm.12463

    Article  CAS  PubMed  Google Scholar 

  35. Zusman O, Avni T, Leibovici L et al (2013) Systematic review and meta-analysis of in vitro synergy of polymyxins and carbapenems. Antimicrob Agents Chemother 57:5104–5111. https://doi.org/10.1128/AAC.01230-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Horcajada JP, Montero M, Oliver A et al (2019) Epidemiology and treatment of multidrug-resistant and extensively drug-resistant Pseudomonas aeruginosa infections. Clin Microbiol Rev 32:e00031–e00019. https://doi.org/10.1128/CMR.00031-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lucca F, Guarnieri M, Ros M, Muffato G, Rigoli R, Dalt L (2018) Antibiotic resistance evolution of Pseudomonas aeruginosa in cystic fibrosis patients (2010–2013). Clin Respir J 12:2189–2196. https://doi.org/10.1111/crj.12787

    Article  CAS  PubMed  Google Scholar 

  38. Pedersen SS, Olesen HV, Jensen-Fangel S, Nørskov-Lauritsen N, Wang M (2018) Colistin resistance in Pseudomonas aeruginosa and Achromobacter spp. cultured from Danish cystic fibrosis patients is not related to plasmid-mediated expression of mcr-1. J Cyst Fibros 17(e22–e23). https://doi.org/10.1016/j.jcf.2017.12.001

  39. Wi YM, Choi J, Lee J et al (2017) Emergence of colistin resistance in Pseudomonas aeruginosa ST235 clone in South Korea. Int J Antimicrob Agents 49:767–769. https://doi.org/10.1016/j.ijantimicag.2017.01.023

    Article  CAS  PubMed  Google Scholar 

  40. Chen X, Xu J, Zhu Q, Ren Y, Zhao L (2020) Polymyxin B resistance rates in carbapenem-resistant Pseudomonas aeruginosa isolates and a comparison between Etest® and broth microdilution methods of antimicrobial susceptibility testing. Exp Ther Med 16:749–767. https://doi.org/10.1034/j.1399-3003.2000.16d30.x

    Article  Google Scholar 

  41. Xiao C, Zhu Y, Yang Z et al (2022) Prevalence and molecular characteristics of polymyxin-resistant Pseudomonas aeruginosa in a Chinese tertiary teaching hospital. Antibiot (Basel) 11:799. https://doi.org/10.3390/antibiotics11060799

    Article  CAS  Google Scholar 

  42. Zarate M, Barrantes D, Cuicapuza D et al (2021) Frequency of colistin resistance in Pseudomonas aeruginosa: first report from Peru. Rev Peru Med Exp Salud Publica 38:308–312. https://doi.org/10.17843/rpmesp.2021.382.6977

    Article  PubMed  Google Scholar 

  43. Snesrud E, Maybank R, Kwak YI, Jones AR, Hinkle MJ, McGann P (2018) Chromosomally encoded mcr-5 in colistin-nonsusceptible Pseudomonas aeruginosa. Antimicrob Agents Chemother 62:e00679–e00618. https://doi.org/10.1128/AAC.00679-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hameed F, Khan MA, Muhammad H, Sarwar T, Bilal H, Rehman TU (2019) Plasmid-mediated mcr-1 gene in Acinetobacter baumannii and Pseudomonas aeruginosa: first report from Pakistan. Rev Soc Bras Med Trop 52:e20190237. https://doi.org/10.1590/0037-8682-0237-2019

    Article  PubMed  Google Scholar 

  45. Lo Sciuto A, Cervoni M, Stefanelli R, Mancone C, Imperi F (2020) Effect of lipid A aminoarabinosylation on Pseudomonas aeruginosa colistin resistance and fitness. Int J Antimicrob Agents 55:105957. https://doi.org/10.1016/j.ijantimicag.2020.105957

    Article  CAS  PubMed  Google Scholar 

  46. Chen H, Mai H, Lopes B, Wen F, Patil S (2022) Novel Pseudomonas aeruginosa strains co-harbouring blaNDM1 metallo β-lactamase and mcr-1 isolated from immunocompromised paediatric patients. Infect Drug Resist. 15, 2929–2936. https://doi.org/10.2147/IDR.S368566

  47. Döring G, Conway SP, Heijerman HG et al (2000) Antibiotic therapy against Pseudomonas aeruginosa in cystic fibrosis: a European consensus. Eur Respir J 16:749–767. https://doi.org/10.1034/j.1399-3003.2000.16d30.x

    Article  PubMed  Google Scholar 

  48. Li Y, Zhang X, Wang C et al (2015) Characterization by phenotypic and genotypic methods of metallo-β-lactamase-producing Pseudomonas aeruginosa isolated from patients with cystic fibrosis. Mol Med Rep 11:494–498. https://doi.org/10.3892/mmr.2014.2685

    Article  CAS  PubMed  Google Scholar 

  49. Mustafa M, Chalhoub H, Denis O et al (2016) Antimicrobial susceptibility of Pseudomonas aeruginosa isolated from cystic fibrosis patients in Northern Europe. Antimicrob Agents Chemother 60:6735–6741. https://doi.org/10.1128/AAC.01046-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kostoulias X, Chang C, Wisniewski J, Abbott IJ, Zisis H, Dennison A (2023) Antimicrobial susceptibility of ceftolozane-tazobactam against multidrug-resistant Pseudomonas aeruginosa isolates from Melbourne. Australia Pathol 55:663–668. https://doi.org/10.1016/j.pathol.2023.03.009

    Article  CAS  Google Scholar 

  51. Hermes DM, Pitt CP, Lutz L et al (2013) Evaluation of heteroresistance to polymyxin B among carbapenem-susceptible and -resistant Pseudomonas aeruginosa. J Med Microbiol 62:1184–1189. https://doi.org/10.1099/jmm.0.059220-0

    Article  PubMed  Google Scholar 

  52. Nguyen L, Garcia J, Gruenberg K, MacDougall C (2018) Multidrug-resistant Pseudomonas infections: hard to treat, but hope on the horizon? Curr Infect Dis Rep 20:23. https://doi.org/10.1007/s11908-018-0629-6

    Article  PubMed  Google Scholar 

  53. KRINKO (2012) Hygiene measures for infection or colonization with multidrug-resistant gram-negative bacilli. Commission recommendation for hospital hygiene and infection prevention (KRINKO) at the Robert Koch Institute (RKI). Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 55:1311–1354. https://doi.org/10.1007/s00103-012-1549-5

    Article  Google Scholar 

  54. Wolfensberger A, Kuster SP, Marchesi M, Zbinden R, Hombach M (2019) The effect of varying multidrug-resistence (MDR) definitions on rates of MDR gram-negative rods. Antimicrob Resist Infect Control 8:193. https://doi.org/10.1186/s13756-019-0614-3

    Article  PubMed  PubMed Central  Google Scholar 

  55. Friedli O, Völlmy I, Schrenzel J, Harbarth S, Kronenberg A (2022) Retrospective data analysis for definition of multidrug resistance in gram-negative bacteria - a consensus proposal. Swiss Med Wkly 152:w30195. https://doi.org/10.4414/smw.2022.w30195

    Article  CAS  PubMed  Google Scholar 

  56. Durda-Masny M, GoździkSpychalska J, John A et al (2021) The determinants of survival among adults with cystic fibrosis – a cohort study. J Physiol Anthropol 40:19. https://doi.org/10.1186/s40101-021-00269-7

    Article  PubMed  PubMed Central  Google Scholar 

  57. Leão RS, Carvalho-Assef AP, Ferreira AG et al (2010) Comparison of the worldwide transmissible Pseudomonas aeruginosa with isolates from Brazilian cystic fibrosis patients. Braz J Microbiol 41:1079–1081. https://doi.org/10.1590/S1517-838220100004000028

    Article  PubMed  PubMed Central  Google Scholar 

  58. Prickett MH, Hauser AR, McColley SA et al (2017) Aminoglycoside resistance of Pseudomonas aeruginosa in cystic fibrosis results from convergent evolution in the mexZ gene. Thorax 72:40–47. https://doi.org/10.1136/thoraxjnl-2015-208027

    Article  PubMed  Google Scholar 

  59. Singh M, Yau YC, Wang S, Waters V, Kumar A (2017) MexXY efflux pump overexpression and aminoglycoside resistance in cystic fibrosis isolates of Pseudomonas aeruginosa from chronic infections. Can J Microbiol 63:929–938. https://doi.org/10.1139/cjm-2017-0380

    Article  CAS  PubMed  Google Scholar 

  60. Suresh M, Nithya N, Jayasree PR, Vimal KP, Kumar PR (2018) Mutational analyses of regulatory genes, mexR, nalC, nalD and mexZ of mexAB-oprM and mexXY operons, in efflux pump hyperexpressing multidrug-resistant clinical isolates of Pseudomonas aeruginosa. World J Microbiol Biotechnol 34:83. https://doi.org/10.1007/s11274-018-2465-0

    Article  CAS  PubMed  Google Scholar 

  61. Haenni M, Bour M, Châtre P, Madec J, Plésiat P, Jeannot K (2017) Resistance of animal strains of Pseudomonas aeruginosa to carbapenems. Front Microbiol 8:1847. https://doi.org/10.3389/fmicb.2017.01847

    Article  PubMed  PubMed Central  Google Scholar 

  62. Horna G, López M, Guerra H, Saénz Y, Ruiz J (2018) Interplay between MexAB-OprM and MexEF-OprN in clinical isolates of Pseudomonas aeruginosa. Sci Rep 8:16463. https://doi.org/10.1038/s41598-018-34694-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Farra A, Islam S, Strålfors A, Sörberg M, Wretlind B (2008) Role of outer membrane protein OprD and penicillin-binding proteins in resistance of Pseudomonas aeruginosa to imipenem and meropenem. Int J Antimicrob Agents 31:427–433. https://doi.org/10.1016/j.ijantimicag.2007.12.016

    Article  CAS  PubMed  Google Scholar 

  64. Kim CH, Kang HY, Kim BR et al (2016) Mutational inactivation of OprD in carbapenem-resistant Pseudomonas aeruginosa isolates from Korean hospitals. J Microbiol 54:44–49. https://doi.org/10.1007/s12275-016-5562-5

    Article  CAS  PubMed  Google Scholar 

  65. Kao C, Chen S, Hung K et al (2016) Overproduction of active efflux pump and variations of OprD dominate in imipenem-resistant Pseudomonas aeruginosa isolated from patients with bloodstream infections in Taiwan. BMC Microbiol 16:107. https://doi.org/10.1186/s12866-016-0719-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lee J, Ko KS (2014) Mutations and expression of PmrAB and PhoPQ related with colistin resistance in Pseudomonas aeruginosa clinical isolates. Diagn Microbiol Infect Dis 78:271–276. https://doi.org/10.1016/j.diagmicrobio.2013.11.027

    Article  CAS  PubMed  Google Scholar 

  67. Lee J, Chung ES, Na IY, Kim H, Shin D, Ko KS (2014) Development of colistin resistance in pmrA-, phoP, parr- and cprr-inactivated mutants of Pseudomonas aeruginosa. J Antimicrob Chemother 69:2966–2971. https://doi.org/10.1093/jac/dku238

    Article  CAS  PubMed  Google Scholar 

  68. Domitrovic TN, Hujer AM, Perez F et al (2016) Multidrug resistant Pseudomonas aeruginosa causing prosthetic valve endocarditis: a genetic-based chronicle of evolving antibiotic resistance. Open Forum Infect Dis 3:ofw188. https://doi.org/10.1093/ofid/ofw188

    Article  PubMed  PubMed Central  Google Scholar 

  69. Teo JQ, Tang CY, Lim JC et al (2021) Genomic characterization of carbapenem-non-susceptible Pseudomonas aeruginosa in Singapore. Emerg Microbes Infect 10:1706–1716. https://doi.org/10.1080/22221751.2021.1968318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hernández-García M, García-Castillo M, García-Fernandéz S et al (2021) Presence of chromosomal crpp-like genes is not always associated with ciprofloxacin resistance in Pseudomonas aeruginosa clinical isolates recovered in ICU patients from Portugal and Spain. Microorganisms 9(388). https://doi.org/10.3390/microorganisms9020388

  71. Rehman A, Patrick WM, Lamont IL (2019) Mechanisms of ciprofloxacin resistance in Pseudomonas aeruginosa: new approaches to an old problem. J Med Microbiol 68:1–10. https://doi.org/10.1099/jmm.0.000873

    Article  CAS  PubMed  Google Scholar 

  72. Stasiak M, Maćkiw E, Kowalska J, Kucharek K, Postupolski J (2021) Silent genes: antimicrobial resistance and antibiotic production. Pol J Microbiol 70:421–429. https://doi.org/10.33073/pjm-2021-040

    Article  PubMed  PubMed Central  Google Scholar 

  73. Leão RS, Pereira RH, Folescu TW et al (2011) KPC-2 carbapenemase-producing Klebsiella pneumoniae isolates from patients with cystic fibrosis. J Cyst Fibros 10:140–142. https://doi.org/10.1016/j.jcf.2010.12.003

    Article  CAS  PubMed  Google Scholar 

  74. Alves DP, Carvalho-Assef AP, Conceição-Neto OC et al (2018) Enterobacter cloacae harbouring blaKPC2 and qnrB-1 isolated from a cystic fibrosis patient: a case report. New Microbes New Infect. 25, 49–51. https://doi.org/10.1016/j.nmni.2018.06.010

  75. Rodrigues ER, Rocha GA, Ferreira AG, Leão RS, Albano RM, Marques EA (2016) Draft genome sequences of four Achromobacter ruhlandii strains isolated from cystic fibrosis patients. Mem Inst Oswaldo Cruz 111:777–780. https://doi.org/10.1590/0074-02760160130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Botelho J, Grosso F, Peixe L (2019) Antibiotic resistance in Pseudomonas aeruginosa – mechanisms, epidemiology and evolution. Drug Resist Updat 44:100640. https://doi.org/10.1016/j.drup.2019.07.002

    Article  PubMed  Google Scholar 

  77. Johnson G, Banerjee S, Putonti C (2022) Diversity of Pseudomonas aeruginosa temperate phages. mSphere 7(e0101521). https://doi.org/10.1128/msphere.01015-21

Download references

Acknowledgements

We express our profound gratitude for the technical assistance provided by the Laboratory of Bacteriology at Hospital Universitario Pedro Ernesto (HUPE-UERJ).

Funding

This study was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) /MCTI/CT-Saúde No 52/2022 - Ações em Ciência, Tecnologia e Inovação para o enfrentamento da Resistência Antimicrobiana (RAM), Processo: 408725/2022-2 and Projeto REDES - Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Faperj E-26/211.554/2019.

Author information

Authors and Affiliations

Authors

Contributions

All author contributed to the study conception and design. In terms of the manuscript composition and information acquisition, FAS played a primary role as the main contributor. Bioinformatics assistance and writing were provided by MMA, while HSR facilitated the search process and comprehension of bioinformatics tools. Corrective measures, content structuring, and information consolidation were carried out with the contributions of EAM and RSL. The first draft of the manuscript was written by FAS, MMA, EAM and RSL, and all authors commented on previous versions of the manuscript. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Robson S. Leão.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethical approval

All procedures performed in this study were in accordance with the ethical standards of the institutional research committee (CAAE: 79547616.1.0000.5259), and the approval was waived by the local Ethics Committee of Universidade do Estado do Rio de Janeiro, in view of the retrospective nature of the study and all the procedures were performed with samples stored in a bacteriological collection.

Additional information

Responsible Editor: Afonso Luis Barth.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simão, F.A., Almeida, M.M., Rosa, H.S. et al. Genetic determinants of antimicrobial resistance in polymyxin B resistant Pseudomonas aeruginosa isolated from airways of patients with cystic fibrosis. Braz J Microbiol (2024). https://doi.org/10.1007/s42770-024-01311-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42770-024-01311-3

Keywords

Navigation