Skip to main content

Advertisement

Log in

Stable isotope labeling as a promising tool for rapid drug susceptibility testing in Neisseria gonorrhoeae

  • Clinical Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The world is heading towards an era of intractable and impending untreatable N. gonorrhoeae, thereby underlining the significance of rapid and accurate prediction of drug resistance as an indispensable need of the hour. In the present study, we optimized and evaluated a stable isotope labeling-based approach using the MALDI-TOF MS (Matrix-Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry) for rapid and reliable detection of ciprofloxacin and azithromycin resistance in N. gonorrhoeae. All the isolates were cultured under three varied condition setups viz. medium supplemented with normal lysine, heavy lysine (isotope), and heavy lysine along with the antibiotics (ciprofloxacin/azithromycin), respectively. After incubation, spectra were acquired using the MALDI-TOF MS which were further screened for unique patterns (media-specific spectra) to differentiate drug-susceptible and resistant isolates. The results of the stable isotope labeling assay were comparable to the results of phenotypic methods used for susceptibility testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fair RJ, Tor Y (2014) Antibiotics and bacterial resistance in the 21st century. Perspect Medicinal Chem 6:25–64. https://doi.org/10.4137/PMC.S14459

    Article  Google Scholar 

  2. Unemo M, Shafer WM (2014) Antimicrobial resistance in Neisseria gonorrhoeae in the 21st century: past, evolution, and future. Clin Microbiol Rev 27:587–613. https://doi.org/10.1128/CMR.00010-14

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wi T, Lahra MM, Ndowa F et al (2017) Antimicrobial resistance in Neisseria gonorrhoeae: global surveillance and a call for international collaborative action. PLOS Med 14:e1002344. https://doi.org/10.1371/journal.pmed.1002344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Unemo M, Seifert HS, Hook EW et al (2019) Gonorrhoea. Nat Rev Dis Primers 5:1–23. https://doi.org/10.1038/s41572-019-0128-6

    Article  Google Scholar 

  5. Fletcher-Lartey S, Dronavalli M, Alexander K et al (2019) Trends in antimicrobial resistance patterns in neisseria gonorrhoeae in Australia and New Zealand: a meta-analysis and systematic review. Antibiotics 8. https://doi.org/10.3390/antibiotics8040191

  6. Tapsall J (2001) Antimicrobial resistance in Neisseria gonorrhoeae. Who 1:1–58.http://www.who.int/csr/resources/publications/drugresist/Neisseria_gonorrhoeae.pdf (accessed 7 Dec 2020)

  7. Alcala L, Garcia-Garrote F, Cercenado E et al (1998) Comparison of broth microdilution method using haemophilus test medium and agar dilution method for susceptibility testing of Eikenella corrodens. J Clin Microbiol 36:2386–2388. https://doi.org/10.1128/jcm.36.8.2386-2388.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fluit AC, Visser MR, Schmitz F-J (2001) Molecular detection of antimicrobial resistance. Clin Microbiol Rev 14:836–837. https://doi.org/10.1128/CMR.14.4.836-871.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Singhal N, Kumar M, Kanaujia PK et al (2015) MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front Microbiol 6:791. https://doi.org/10.3389/fmicb.2015.00791

    Article  PubMed  PubMed Central  Google Scholar 

  10. Majcherczyk PA, McKenna T, Moreillon P et al (2006) The discriminatory power of MALDI-TOF mass spectrometry to differentiate between isogenic teicoplanin-susceptible and teicoplanin-resistant strains of methicillin-resistant Staphylococcus aureus. FEMS Microbiol Lett 255:233–239. https://doi.org/10.1111/j.1574-6968.2005.00060.x

    Article  CAS  PubMed  Google Scholar 

  11. Burckhardt I, Zimmermann S (2011) Using matrix-assisted laser desorption ionization-time of flight mass spectrometry to detect carbapenem resistance within 1 to 2.5 hours. J Clin Microbiol 49:3321–4. https://doi.org/10.1128/JCM.00287-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Edwards-Jones V, Claydon MA, Evason DJ et al (2000) Rapid discrimination between methicillin-sensitive and methicillin-resistant Staphylococcus aureus by intact cell mass spectrometry. J Med Microbiol 49:295–300. https://doi.org/10.1099/0022-1317-49-3-295

    Article  CAS  PubMed  Google Scholar 

  13. Vereshchagin VA, Ilina EN, Zubkov MM et al (2005) Detection of fluoroquinolone resistance single-nucleotide polymorphisms in Neisseria gonorrhoeae gyrA and parC using MALDI-TOF mass spectrometry. Mol Biol 39:806–814. https://doi.org/10.1007/s11008-005-0099-4

    Article  CAS  Google Scholar 

  14. de Carolis E, Vella A, Florio AR et al (2012) Use of matrix-assisted laser desorption ionization-time of flight mass spectrometry for caspofungin susceptibility testing of Candida and Aspergillus species. J Clin Microbiol 50:2479–2483. https://doi.org/10.1128/JCM.00224-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Paul S, Singh P, Shamanth AS et al (2018) Rapid detection of fluconazole resistance in Candida tropicalis by MALDI-TOF MS. Med Mycol 56:234–241. https://doi.org/10.1093/mmy/myx042

    Article  CAS  PubMed  Google Scholar 

  16. Sparbier K, Lange C, Jung J et al (2013) Maldi biotyper-based rapid resistance detection by stable-isotope labeling. J Clin Microbiol 51:3741–3748. https://doi.org/10.1128/JCM.01536-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jung JS, Eberl T, Sparbier K et al (2014) Rapid detection of antibiotic resistance based on mass spectrometry and stable isotopes. Eur J Clin Microbiol Infect Dis 33:949–955. https://doi.org/10.1007/s10096-013-2031-5

    Article  CAS  PubMed  Google Scholar 

  18. Paul S, Singh S, Chakrabarti A et al (2019) Stable isotope labelling: an approach for MALDI-TOF MS-based rapid detection of fluconazole resistance in Candida tropicalis. J Antimicrob Chemother 74:1269–1276. https://doi.org/10.1093/jac/dkz019

    Article  CAS  PubMed  Google Scholar 

  19. Wade JJ, Graver MA (2007) A fully defined, clear and protein-free liquid medium permitting dense growth of Neisseria gonorrhoeae from very low inocula. FEMS Microbiol Lett 273:35–37. https://doi.org/10.1111/j.1574-6968.2007.00776.x

    Article  CAS  PubMed  Google Scholar 

  20. Vella A, de Carolis E, Vaccaro L et al (2013) Rapid antifungal susceptibility testing by matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis. J Clin Microbiol 51:2964–2969. https://doi.org/10.1128/JCM.00903-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bucknall M, Fung KYC, Duncan MW (2002) Practical quantitative biomedical applications of MALDI-TOF mass spectrometry. J Am Soc Mass Spectrom 13:1015–1027. https://doi.org/10.1016/S1044-0305(02)00426-9

    Article  CAS  PubMed  Google Scholar 

  22. Sparbier K, Schubert S, Weller U et al (2012) Matrix-assisted laser desorption ionization-time of flight mass spectrometry-based functional assay for rapid detection of resistance against β-lactam antibiotics. J Clin Microbiol 50:927–937. https://doi.org/10.1128/JCM.05737-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Idelevich EA, Sparbier K, Kostrzewa M et al (2018) Rapid detection of antibiotic resistance by MALDI-TOF mass spectrometry using a novel direct-on-target microdroplet growth assay. Clin Microbiol Infect 24:738–743. https://doi.org/10.1016/j.cmi.2017.10.016

    Article  CAS  PubMed  Google Scholar 

  24. Han J, Yi S, Zhao X et al (2019) Improved SILAC method for double labeling of bacterial proteome. J Proteomics 194:89–98. https://doi.org/10.1016/j.jprot.2018.12.011

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors duly acknowledge the Department of Medical Microbiology, PGIMER, Chandigarh for providing all the necessary facilities.

Author information

Authors and Affiliations

Authors

Contributions

RD: performing experiments, conceptualization, data analysis, and manuscript writing; SP: data analysis and manuscript writing/correction; PG: manuscript writing/correction; RY: manuscript correction; SSood: supervision; AG: conceptualization and supervision; MRS: conceptualization and supervision; SG: conceptualization and supervision; SS: conceptualization, supervision, and manuscript correction.

Corresponding author

Correspondence to Sunil Sethi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Tânia A. Tardelli Gomes

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 243 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dadwal, R., Paul, S., Gupta, P. et al. Stable isotope labeling as a promising tool for rapid drug susceptibility testing in Neisseria gonorrhoeae. Braz J Microbiol 54, 1819–1825 (2023). https://doi.org/10.1007/s42770-023-00996-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-023-00996-2

Keywords

Navigation