Skip to main content

Advertisement

Log in

The presence of antibiotics and multidrug-resistant Staphylococcus aureus reservoir in a low-order stream spring in central Brazil

  • Environmental Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The disposal of industrial effluents strongly influences low-order streams, which makes them fragile ecosystems that can be impacted by contamination. In central Brazil, the Extrema River spring targets the dumping of pharmaceutical products from the surrounding industries. So, this work aimed to investigate the presence of antibiotics in Extrema River spring samples and the isolation of Staphylococcus aureus, a potential multidrug-resistant bacteria, verifying the antimicrobial resistance profile of these isolates. Three campaigns were carried out in different locals (P1–P3) between October and December 2021, in the dry and rainy seasons. The high-performance liquid chromatography-tandem mass spectrometry (LCMS) approach indicated the presence of sulfamethoxazole (≥ 1 ng/L), metronidazole (< 0.5 ng/L), and chloramphenicol (< 5 ng/L) in the water samples in November (rainy season). S. aureus was isolated in P1 (n = 128), P2 (n = 168), and P3 (n = 36), with greater resistance to trimethoprim-sulfamethoxazole (90%), clindamycin (70%), and gentamicin (60%). The presence of antibiotics in the Extrema River spring may cause S. aureus antibiotic resistance development. The presence of antibiotics and the high percentage of isolated multidrug-resistant S. aureus in the Extrema River spring cause concern and indicate the clandestine dumping of effluents from nearby pharmaceutical industries. Since preserving the springs of low-order streams is important for the environment and public health, we encourage monitoring the wastewater from Extrema River’s nearby pharmaceutical industries and preserving the spring of this river.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Data and materials not included in the manuscript are available under request.

References

  1. IBGE. Instituto Brasileiro de Geografia e Estatística (2019) Biomas e sistema costeiro-marinho do Brasil: compatível com a escala 1:250.000. Rio de Janeiro, Coordenação de Recursos Naturais e Estudos Ambientais. (Relatórios metodológicos, v. 45). 168 p. https://biblioteca.ibge.gov.br/visualizacao/livros/liv101676.pdf

  2. Roa F, Telles MPC (2017) The Cerrado (Brazil) plant cytogenetics database. Comparative. Cytogenetics 11(2):285–297. https://doi.org/10.3897/CompCytogen.v11i2.11395

    Article  Google Scholar 

  3. Hunke P, Mueller EM, Schröder B, Zeilhofer P (2015) The Brazilian Cerrado: assessment of water and soil degradation in catchments under intensive agricultural use. Ecohydrology 8(6):1154–1180. https://doi.org/10.1002/eco.1573

    Article  Google Scholar 

  4. Lemes L, Andrade AFA, Loyola R (2020) Spatial priorities for agricultural development in the Brazilian Cerrado: may economy and conservation coexist? Biodivers Conserv 29(5):1683–1700. https://doi.org/10.1007/s10531-019-01719-6

    Article  Google Scholar 

  5. Latrubesse EM, Arima E, Ferreira ME, Nogueira SH, Wittmann F, Dias MS, Dagosta FCP, Bayer M (2019) Fostering water resource governance and conservation in the Brazilian Cerrado biome. Conserv Sci Pract 1(9):e77. https://doi.org/10.1111/csp2.77

    Article  Google Scholar 

  6. Althoff D, Rodrigues LN, Silva DD (2021) Assessment of water availability vulnerability in the Cerrado. Appl Water Sci 11:176. https://doi.org/10.1007/s13201-021-01521-2

    Article  CAS  Google Scholar 

  7. Zadorozhnaya O, Kirsanov D, Buzhinky I, Tsarev F, Abramova N, Bratov A, Muñoz FJ, Ribó J, Bori J, Riva MC, Legin A (2015) Water pollution monitoring by an artificial sensory system performing in terms of Vibrio fischeri bacteria. Sens Actuators B Chem 207(B):1069–1075. https://doi.org/10.1016/j.snb.2014.08.056

    Article  CAS  Google Scholar 

  8. Fernandes CE, Barbosa Neto E, Oliveira VC, Fernandes LIFA (2020) Environmental sanitation: the challenges of the DAIA sewage treatment plant in Anápolis (GO). Brazilian Journal of Development 6(7):42426–42436. https://doi.org/10.34117/bjdv6n7-018

    Article  Google Scholar 

  9. Bailão EFLC, Santos LAC, Almeida SS, D’Abadia PL, Morais RJ, Matos TN, Caramori SS, Araújo CST, Silva Neto CM, Almeida LM (2020) Effect of land-use pattern on the physicochemical and genotoxic properties of water in a low-order stream in Central Brazil. Revista Ambiente & Água 15(3):e2486. https://doi.org/10.4136/ambi-agua.2486

    Article  CAS  Google Scholar 

  10. Freeman MC, Pringle CM, Jackson CR (2007) Hydrologic connectivity and the contribution of stream headwaters to ecological integrity at regional scales. JAWRA Journal of the American Water Resources Association 43(1):5–14. https://doi.org/10.1111/j.1752-1688.2007.00002.x

    Article  Google Scholar 

  11. Ding J, Jiang Y, Liu Q, Hou Z, Liao J, Fu L, Peng Q (2016) Influences of the land use pattern on water quality in low-order streams of the Dongjiang River basin, China: a multi-scale analysis. Sci Total Environ 551-552:205–216. https://doi.org/10.1016/j.scitotenv.2016.01.162

    Article  CAS  PubMed  Google Scholar 

  12. Lehosmaa K, Muotka T, Pirttilä AN, Jaakola I, Rossi PK, Jyväsjärvi J (2021) Bacterial communities at a groundwater-surface water ecotone: gradual change or abrupt transition points along a contamination gradient? Environ Microbiol 23(11):6694–6706. https://doi.org/10.1111/1462-2920.15708

    Article  CAS  PubMed  Google Scholar 

  13. Cantonati M, Füreder L, Gerecke R, Jüttner I, Cox E (2012) Crenic habitats, hotpots for freshwater biodiversity conservation: toward an understanding of their ecology. Freshw Sci 31(2):463–480. https://doi.org/10.1899/11-111.1

    Article  Google Scholar 

  14. Cantonati M, Fensham RJ, Stevens LE, Gerecke R, Glazier DS, Goldscheider N, Kinight N, Richardson RL, Springer JS, Tockner AE, Klement T (2021) Urgent plea for global protection of springs. Conserv Biol 35(1):378–382. https://doi.org/10.1111/COBI.13576

    Article  PubMed  Google Scholar 

  15. Ge LK, Chen JW, Wei XX, Zhang SY, Qiao XL, Cai XY, Xie Q (2010) Aquatic photochemistry of fluoroquinolone antibiotics: kinetics, pathways, and multivariate effects of main water constituents. Environ Sci Technol 44(7):2400–2405. https://doi.org/10.1021/es902852v

    Article  CAS  PubMed  Google Scholar 

  16. Guo X, Xiaojun L, Zhang A, Yan Z, Chen S, Wang N (2020) Antibiotic contamination in a typical water-rich city in southeast China: a concern for drinking water resource safety. J Environ Sci Health B 55(3):193–209. https://doi.org/10.1080/03601234.2019.1679563

    Article  CAS  PubMed  Google Scholar 

  17. Xue BM, Zhang RJ, Wang YG, Liu X, Li J, Zhang G (2013) Antibiotic contamination in a typical developing city in South China: occurrence and ecological risks in the Yongjiang River impacted by tributary discharge and anthropogenic activities. Ecotoxicol Environ Saf 92:229–236. https://doi.org/10.1016/j.ecoenv.2013.02.009

    Article  CAS  PubMed  Google Scholar 

  18. Zhang RL, Zhang RJ, Zou SC, Yang Y, Li J, Wang YG, Yu KF, Zhang G (2017) Occurrence, distribution and ecological risks of fluoroquinolone antibiotics in the Dongjiang River and the Beijiang River, Pearl River Delta, South China. Bull Environ Contam Toxicol 99:46–53. https://doi.org/10.1007/s00128-017-2107-5

    Article  CAS  PubMed  Google Scholar 

  19. Kleywegt S, Pileggi V, Yang P, Hao C, Zhao X, Rocks C, Thach S, Cheung P, Whitehea B (2011) Pharmaceuticals, hormones and bisphenol a in untreated source and finished drinking water in Ontario, Canada-occurrence and treatment efficiency. Sci Total Environ 409:1481–1488. https://doi.org/10.1016/j.scitotenv.2011.01.010

    Article  CAS  PubMed  Google Scholar 

  20. Benotti MJ, Trenholm RA, Vanderford BJ, Holady JC, Stanford BD, Snyder SA (2009) Pharmaceuticals and endocrine disrupting compounds in U.S. drinking water. Environ Sci Technol 43(3):597–603. https://doi.org/10.1021/es801845a

    Article  CAS  PubMed  Google Scholar 

  21. Locatelli MAF, Sodré FF, Jardim WF (2011) Determination of antibiotics in Brazilian surface waters using liquid chromatography–electrospray tandem mass spectrometry. Arch Environ Contam Toxicol 60(3):385–393. https://doi.org/10.1007/s00244-010-9550-1

    Article  CAS  PubMed  Google Scholar 

  22. Arsand JB, Hoff RB, Jank L, Bussamara R, Dellegraver A, Bento FM, Kmetzsch L, Falcão DA, Peralba MCR, Gomes AA, Pizzolato TM (2020) Presence of antibiotic resistance genes and its association with antibiotic occurrence in Dilúvio River in southern Brazil. Sci Total Environ 738:139781. https://doi.org/10.1016/j.scitotenv.2020.139781

    Article  CAS  PubMed  Google Scholar 

  23. Porrero MC, Harrison E, Fernández-Garayzábal JF, Paterson GK, Dízer-Guerrier A, Holmes MA, Domínguez L (2014) Detection of mecC-Methicillin-resistant Staphylococcus aureus isolates in river water: a potential role for water in the environmental dissemination. Environ Microbiol Rep 6(6):705–708. https://doi.org/10.1111/1758-2229.12191

    Article  CAS  Google Scholar 

  24. Su M, Satola SW, Read TD (2019) Genome-based prediction of bacterial antibiotic resistance. J Clin Microbiol 57(3):e01405–e01418. https://doi.org/10.1128/jcm.01405-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rodriguez-Mozaz S, Chamorro S, Marti E, Huerta B, Gros M, Sànchez-Melsió A, Borrego CM, Barceló D, Balcázar L (2015) Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Res 69:234–242. https://doi.org/10.1016/j.watres.2014.11.021

    Article  CAS  PubMed  Google Scholar 

  26. Arunkumar V, Prabagaravarthanan R, Bhaskar M (2017) Prevalence of Methicillin-resistant Staphylococcus aureus (MRSA) infections among patients admitted in critical care units in a tertiary care hospital. Int J Res Med Sci 5:2362–2366. https://doi.org/10.18203/2320-6012.ijrms20172085

    Article  Google Scholar 

  27. Miklasińska-Majdanik M (2021) Mechanisms of resistance to macrolide antibiotics among Staphylococcus aureus. Antibiotics 10(11):1406. https://doi.org/10.3390/antibiotics10111406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Basak S, Singh P, Rajurkar M (2016) Multidrug resistant and extensively drug resistant bacteria: a study. J Pathog 2016:4065603. https://doi.org/10.1155/2016/4065603

    Article  PubMed  PubMed Central  Google Scholar 

  29. Klevens RM, Morrison MA, Nadle J, Petit S, Gershman K, Ray S, Harrison LH, Lynfield R, Dumyati G, Townes JM, Craig AS, Zell ER, Fosheim GE, McDougal LK, Carey RB, Fridkin SK. Active bacterial core surveillance (ABCs) MRSA investigators (2007) Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA, 298 (15):1763-1771. https://doi.org/10.1001/jama.298.15.1763

  30. Plano LRW, Garza AC, Shibata T, Elmir SM, Kish J, Sinigalliano CD, Gidley ML, Miller G, Withum K, Fleming LE, Solo-Gabriele HM (2011) Shedding of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus from adult and pediatric bathers in marine waters. BMC Microbiol 11:5. https://doi.org/10.1186/1471-2180-11-5

    Article  PubMed  PubMed Central  Google Scholar 

  31. Harakeh S, Yassine H, Hajjar S, El-Fadel M (2006) Isolates of Staphylococcus aureus and saprophyticus resistant to antimicrobials isolated from the Lebanese aquatic environment. Mar Pollut Bull 52(8):912–919. https://doi.org/10.1016/j.marpolbul.2005.12.008

    Article  CAS  PubMed  Google Scholar 

  32. Seyedmonir E, Yilmaz F, Icgen B (2015) mecA gene dissemination among staphylococcal and non-staphylococcal isolates shed in surface waters. Bull Environ Contam Toxicol 95(1):131–138. https://doi.org/10.1007/s00128-015-1510-z

    Article  CAS  PubMed  Google Scholar 

  33. Charoenca N, Fujioka RS (1993) Assessment of Staphylococcus bacteria in Hawaii’s marine recreational waters. Water Sci Technol 27(3-4):283–289. https://doi.org/10.2166/wst.1993.0361

    Article  Google Scholar 

  34. Tice AD, Pombo D, Hui J, Kurano M, Bankowski MJ, Seifried SE (2010) Quantitation of Staphylococcus aureus in seawater using CHROMagar™ SA. Hawaii Med J 69(1):8–12. http://www.ncbi.nlm.nih.gov/pmc/articles/pmc3104624/

    PubMed  PubMed Central  Google Scholar 

  35. Soge OO, Meschke JS, No DB, Roberts MC (2009) Characterization of methicillin-resistant Staphylococcus aureus and methicillin-resistant coagulase-negative Staphylococcus spp. isolated from US West Coast public marine beaches. J Antimicrob Chemother 64(6):1148–1155. https://doi.org/10.1093/jac/dkp368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Thapaliya D, Hellwing EJ, Kadariya J, Grenier D, Jefferson AJ, Dalman M, Kennedy K, DiPerna M, Orihill A, Taha M, Smith TC (2017) Prevalence and characterization of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus on public recreational beaches in northeast ohio. GeoHealth 1(10):320–332. https://doi.org/10.1002/2017gh000106

    Article  PubMed  PubMed Central  Google Scholar 

  37. Azuma T, Murakami M, Sonoda Y, Ozaki A, Hayashi T (2022) Occurrence and quantitative microbial risk assessment of methicillin-resistant Staphylococcus aureus (MRSA) in a sub-catchment of the Yodo River Basin Japan. Antibiotics 11(10):1355. https://doi.org/10.3390/antibiotics11101355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Santos AV, Couto CF, Lebron YAR, Moreira VR, Foureaux AFS, Reis EO, Santos LVS, Andrade LH, Amaral MCS, Lange LC (2020) Occurrence and risk assessment of pharmaceutically active compounds in water supply systems in Brazil. Sci Total Environ 746:141011. https://doi.org/10.1016/j.scitotenv.2020.141011

    Article  CAS  PubMed  Google Scholar 

  39. Armstrong JL, Shigeno DS, Calomiris JJ, Seidler RJ (1981) Antibiotic-resistant bacteria in drinking water. Appl Environ Microbiol 42(2):277–283. https://doi.org/10.1128/aem.42.2.277-283.1981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zieliński W, Korzeniewska E, Harnisz M, Hubeny J, Buta M, Rolbiecki D (2020) The prevalence of drug-resistant and virulent Staphylococcus spp. in a municipal wastewater treatment plant and their spread in the environment. Environ Int 143:105914. https://doi.org/10.1016/j.envint.2020.105914

    Article  CAS  PubMed  Google Scholar 

  41. Galler H, Feieler G, Petternel C, Reinthaler F, Haas D, Habib J, Kittinger C, Luxner J, Zarfel G (2018) Multiresistant bacteria isolated from activated sludge in Austria. Int J Environ Res Public Health 15(3):479. https://doi.org/10.3390/ijerph15030479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Said MB, Abbassi MS, Gómez P, Ruiz-Ripa L, Sghaier S, Ibrahim C, Torres C, Hassen A (2017) Staphylococcus aureus isolated from wastewater treatment plants in Tunisia: occurrence of human and animal associated lineages. J Water Health 15(4):638–643. https://doi.org/10.2166/wh.2017.258

    Article  PubMed  Google Scholar 

  43. Boopathy R (2017) Presence of methicillin resistant Staphylococcus aureus (MRSA) in sewage treatment plant. Bioresour Technol 240:144–148. https://doi.org/10.1016/j.biortech.2017.02.093

    Article  CAS  PubMed  Google Scholar 

  44. Goldstein RER, Micallef SA, Gibbs SG, Davis JA, He X, George A, Kleinfelter LM, Schreiber NA, Mukherjee S, Sapkota A, Joseph SW, Sapkota AR (2012) Methicillin-resistant Staphylococcus aureus (MRSA) detected at four U.S. wastewater treatment plants. Environ Health Pers 120(11):1551–1558. https://doi.org/10.1289/ehp.1205436

    Article  CAS  Google Scholar 

  45. Börjesson S, Matussek A, Melin S, Löfgren S, Lindgren PE (2010) Methicillin-resistant Staphylococcus aureus (MRSA) in municipal wastewater: an uncharted threat? J Appl Microbiol 108(4):1244–1251. https://doi.org/10.1111/j.1365-2672.2009.04515.x

    Article  PubMed  Google Scholar 

  46. Pendleton JN, Gorman SP, Gilmore BF (2013) Clinical relevance of the ESKAPE pathogens. Expert Rev Anti Infect Ther 11(3):297–308. https://doi.org/10.1586/eri.13.12

    Article  CAS  PubMed  Google Scholar 

  47. Wyres KL, Holt KE (2018) Klebsiella pneumoniae as a key trafficker of drug resistance genes from environmental to clinically important bacteria. Curr Opin Microbiol 45:131–113. https://doi.org/10.1016/j.mib.2018.04.004

    Article  CAS  PubMed  Google Scholar 

  48. D’Costa VM, King CE, Kalan L, Morar M, Sung WWL, Schwarz C, Froese D, Zazula G, Calmels F, Debruyne R, Golding GB, Poinar HN, Wright GD (2011) Antibiotic resistance is ancient. Nature 477(7365):457–461. https://doi.org/10.1038/nature10388

    Article  CAS  PubMed  Google Scholar 

  49. Lewis K (2013) Platforms for antibiotic discovery. Nat Rev Drug Discov 12(5):371–387. https://doi.org/10.1038/nrd3975

    Article  CAS  PubMed  Google Scholar 

  50. Barreto Junior NM, Angelini R. (2003) Mapeamento Topográfico e Delimitação Fitofisionômica Da Área Natural Do Campus Da UEG (Anápolis). Mostra de Iniciação Científica da Universidade Estadual de Goiás; UEG: Anápolis, Brazil.

  51. Cardoso MRD, Marcuzzo FFN (2014) Barros JR (2014) Classificação Climática de Köppen-Geiger Para o Estado de Goiás e o Distrito Federal|Cardoso|ACTA GEOGRÁFICA. Acta Geográfica 8:40–55. https://rigeo.cprm.gov.br/handle/doc/15047

    Article  Google Scholar 

  52. Reiner K (2010) Catalase teste protocol. American Society for Microbiology, Washington, DC 20036. pp. 2–3

  53. Laborclin® (2018) Staphclin latex kit. Pinhais, Paraná, Brazil. https://cdn.media.interlabdist.com.br/uploads/2021/01/570100-STAPHCLIN-LATEX-ESTAFILO-R23mL-KIT-50T-2019.pdf

  54. Shaw K, Mazumder S (2020) Recent prevalence of clinical multidrug resistant Staphylococcus aureus in West Bengal. IOSR Journal of Dental and Medical Sciences, 19:39-44. https://www.iosrjournals.org/iosr-jdms/papers/Vol19-issue1/Series-5/H1901053944.pdf

  55. Goodwin KD, Pobuda M (2009) Performance of CHROMagar™ Staph aureus and CHROMagar™ MRSA for detection of Staphylococcus aureus in seawater and beach sand–Comparison of culture, agglutination, and molecular analyses. Water Res 43(19):4802–4811. https://doi.org/10.1016/j.watres.2009.06.025

    Article  CAS  PubMed  Google Scholar 

  56. Tsai H-C, Tao C-W, Hsu B-M, Yang Y-Y, Tseng Y-C, Huang T-Y, Huang S-W, Kuo Y-J, Chen J-S (2020) Multidrug-resistance in methicillin-resistant Staphylococcus aureus (MRSA) isolated from a subtropical river contaminated by nearby livestock industries. Ecotoxicol Environ Saf 200:110724. https://doi.org/10.1016/j.ecoenv.2020.110724

    Article  CAS  PubMed  Google Scholar 

  57. CLSI M100. Clinical and Laboratory Standards Institute (2020) Performance standards for antimicrobial susceptibility testing, 30th ed. CLSI supplement M100. Clinical and Laboratory Standards Institute, Wayne, PA. https://clsi.org/standards/products/microbiology/documents/m100/

  58. Magiorakos A-P, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Imeter GK, Olsson-liljequist B, Paterson DL, Rice LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18(3):268–281. https://doi.org/10.1111/j.1469-0691.2011.03570.x

    Article  CAS  PubMed  Google Scholar 

  59. Brakstad OG, Aasbakk K, Maeland JA (1992) Detection of Staphylococcus aureus by polymerase chain reaction amplification of the nuc gene. J Clin Microbiol 30(7):1654–1660. https://doi.org/10.1128/jcm.30.7.1654-1660.1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. BioEstat. Version 5.3 (2012) Free computer program for data survey - descriptive statistical techniques. 2012. https://www2.assis.unesp.br/ffrei/bioestat.html

  61. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological Statistics software package for education and data analysis. Paleontologia Electronica, 4(1):9pp. https://palaeo-electronica.org/2001_1/past/past.pdf

  62. Ding S, Zhang Y, Liu B, Kong W, Meng W (2013) Effects of riparian land use on water quality and fish communities in the headwater stream of the Taizi River in China. Front Environ Sci Eng 7(5):699–708. https://doi.org/10.1007/s11783-013-0528-x

    Article  Google Scholar 

  63. Brazil, Conselho Nacional do Meio Ambiente - CONAMA (2005) Resolução n° 357 de 17 de março de 2005. Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providências. Diário Oficial [da] União: seção 1, Brasília, DF, 053:58-63. https://www.siam.mg.gov.br/sla/download.pdf?idNorma=2747

  64. Schenck K, Rosenblum L, Ramakrishnan B Jr, Carson J, Macke D, Nietch C (2015) Correlation of trace contaminants to wastewater management practices in small watersheds. Environ Sci Process Impacts 17(5):956–964. https://doi.org/10.1039/C4EM00583J

    Article  CAS  PubMed  Google Scholar 

  65. Felis E, Kalka J, Sochaki A, Kowalska K, Bajkacz S, Harnisz M, Korzeniewska E (2020) Antimicrobial pharmaceuticals in the aquatic environment-occurrence and environmental implications. Eur J Pharmacol 866:172813. https://doi.org/10.1016/j.ejphar.2019.172813

    Article  CAS  PubMed  Google Scholar 

  66. Ma M, Dillon P, Zheng Y (2019) Determination of sulfamethoxazole degradation rate by an in situ experiment in a reducing alluvial aquifer of the North China plain. Environmental Science & Technology 53(18):10620–10628. https://doi.org/10.1021/acs.est.9b00832

    Article  CAS  Google Scholar 

  67. Choi K, Kim Y, Jung J, Kim MH, Kim CS, Kim NH, Park J (2008) Occurrences and ecological risks of roxithromycin, trimethoprim, and chloramphenicol in the Han River, Korea. Environ Toxicol Chem: Int J 27(3):711–719. https://doi.org/10.1897/07-143.1

    Article  CAS  Google Scholar 

  68. Liu X, Lv K, Deng C, Yu Z, Shi J, Johnson AC (2019) Persistence and migration of tetracycline, sulfonamide, fluoroquinolone, and macrolide antibiotics in streams using a simulated hydrodynamic system. Environ Pollut 252:1532–1538. https://doi.org/10.1016/j.envpol.2019.06.095

    Article  CAS  PubMed  Google Scholar 

  69. Kumar M, Ram B, Hilanda R, Poopipattana C, Canh VD, Chaminda T, Furumai H (2019) Concurrence of antibiotic resistant bacteria (ARB), viruses, pharmaceuticals and personal care products (PPCPs) in ambient waters of Guwahati, India: Urban vulnerability and resilience perspective. Sci Total Environ 693:133640. https://doi.org/10.1016/j.scitotenv.2019.133640

    Article  CAS  PubMed  Google Scholar 

  70. Gopal CM, Chat K, Ramaswamy BR, Kumar V, Singhal RK, Basu H, Udayashankar HN, Vasantharaju SG, Kumarreddy YP, Lino SY, Balakrishna K (2021) Seasonal occurrence and risk assessment of pharmaceutical and personal care products in Bengaluru rivers and lakes India. J Environ Chem Eng 9(4):105610. https://doi.org/10.1016/j.jece.2021.105610

    Article  CAS  Google Scholar 

  71. Hanamoto S, Yamamoto-Ikemoto R (2022) In-stream sorption of azithromycin and levofloxacin in a river receiving sewage treatment plant effluent. Environ Pollut 307:119568. https://doi.org/10.1016/j.envpol.2022.119568

    Article  CAS  PubMed  Google Scholar 

  72. Feitosa-Felizzola J, Chiron S (2009) Occurrence and distribution of selected antibiotics in a small Mediterranean stream (Arc River, Southern France). J Hydrol 364(1-2):50–57. https://doi.org/10.1016/j.jhydrol.2008.10.006

    Article  CAS  Google Scholar 

  73. Ashton D, Hilton M, Thomas KV (2004) Investigating the environmental transport of human pharmaceuticals to streams in the United Kingdom. Sci Total Environ 333(1-3):167–184. https://doi.org/10.1016/j.scitotenv.2004.04.062

    Article  CAS  PubMed  Google Scholar 

  74. Bradley PM, Journey CA, Button DT, Carlisle DM, Huffman BJ, et al (2020) Multi-region assessment of pharmaceutical exposures and predicted effects in USA wadeable urbangradient streams. PLOS ONE 15(1):e0228214. https://doi.org/10.1371/journal.pone.0228214

  75. Ilurdoz MS, Sadhwani JJ, Reboso JV (2022) Antibiotic removal processes from water & wastewater for the protection of the aquatic environment - a review. J Water Process Eng 45:102474. https://doi.org/10.1016/j.jwpe.2021.102474

    Article  Google Scholar 

  76. Chaves MJS, Barbosa SC, Malinowski MM, Volpato D, Castro ÍB, Franco TCRS, Primel EG (2020) Pharmaceuticals and personal care products in a Brazilian wetland of international importance: occurrence and environmental risk assessment. Sci Total Environ 734:139374. https://doi.org/10.1016/j.scitotenv.2020.139374

    Article  CAS  PubMed  Google Scholar 

  77. Reis EO, Foureaux AFS, Rodrigues JS, Moreira VR, Lebron YAR, Santos LVS, Amaral MCS, Lange LC (2019) Occurrence, removal and seasonal variation of pharmaceuticals in Brasilian drinking water treatment plants. Environ Pollut 250:773–781. https://doi.org/10.1016/j.envpol.2019.04.102

    Article  CAS  PubMed  Google Scholar 

  78. Barros ALC, Schmidt FF, Aquino SF, Afonso RJCF (2018) Determination of nine pharmaceutical active compounds in surface waters from Paraopeba River Basin in Brazil by LTPE-HPLC-ESI-MS/MS. Environ Sci Pollut Res Int 25:19962–19974. https://doi.org/10.1007/s11356-018-2123-y

    Article  CAS  PubMed  Google Scholar 

  79. Arsand JB, Hoff RB, Jank L, Dallegrave A, Galeazzi C, Barreto F, Pizzolato TM (2018) Wide-scope determination of pharmaceuticals and pesticides in water samples: qualitative and confirmatory screening method using LC-qTOF-MS. Water, Air, & Soil Pollut 229:399. https://doi.org/10.1007/s11270-018-4036-2

    Article  CAS  Google Scholar 

  80. Perin M, Dallegrave A, Barnet LS, Meneghini LZ, Gomes AA, Pizzolato TM (2021) Pharmaceuticals, pesticides and metals/metalloids in Lake Guaíba in Southern Brazil: Spatial and temporal evaluation and a chemometrics approach. Sci Total Environ 793:148561. https://doi.org/10.1016/j.scitotenv.2021.148561

    Article  CAS  PubMed  Google Scholar 

  81. Caldas SS, Rombaldi C, Oliveira Arias JL, Marube LC, Primel EG (2016) Multiresidue method for determination of 58 pesticides, pharmaceuticals and personal care products in water using solvent demulsification dispersive liquid-liquid microextraction combined with liquid chromatography-tandem mass spectrometry. Talanta 146:676–688. https://doi.org/10.1016/j.talanta.2015.06.047

    Article  CAS  PubMed  Google Scholar 

  82. Montagner CC, Sodré FF, Acayaba RD, Vidal C, Campestrini I, Locatelli MA, Pescara IC, Albuquerque AF, Umbuzeiro GA, Jardim WF (2019) Ten years-snapshot of the occurrence of emerging contaminants in drinking, surface and ground waters and wastewaters from São Paulo State, Brazil. J Braz Chem Soc 30:614–632. https://doi.org/10.21577/0103-5053.20180232

    Article  CAS  Google Scholar 

  83. Pivetta RC, Rodrigues-Silva C, Ribeiro AR, Rath S (2020) Tracking the occurrence of psychotropic pharmaceuticals in Brazilian wastewater treatment plants and surface water, with assessment of environmental risks. Sci. Total Environ 727:138661. https://doi.org/10.1016/j.scitotenv.2020.138661

    Article  CAS  PubMed  Google Scholar 

  84. Gomes RP, Oliveira TR, Gama AR, Vieira JDG, Rocha TL, Carneiro LC (2022) Gene resistance profile and multidrug-resistant bacteria isolated from a stream in midwestern Brazil. Environ Nanotechnol Monit Manag 18:100688. https://doi.org/10.1016/j.enmm.2022.100688

    Article  CAS  Google Scholar 

  85. Wilkinson JL, Boxall ABA, Kolpin DW, Leung KMY, Lai RWS, Galbán-Malagón C, Adell AD, Mondon J, Metian M, Marchant RA, Bouzas-Monroy A, Cuni-Sanchez A, Coors A, Carriquiriborde P, Rojo M, Gordon C, Cara M, Moermond M, Luarte T, Teta C (2022) Pharmaceutical pollution of the world’s rivers. Proc Natl Acad Sci U S A 119(8):e2113947119. https://doi.org/10.1073/pnas.2113947119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bouzas-Monroy A, Wilkinson JL, Melling M, Boxall ABA (2022) Assessment of the potential ecotoxicological effects of pharmaceuticals in the world’s rivers. Environ Toxicol Chem 1-13. https://doi.org/10.1002/etc.5355

  87. Arthington AH (2021) Grand challenges to support the freshwater biodiversity emergency recovery plan. Front Environ Sci 9:664313. https://doi.org/10.3389/fenvs.2021.664313

    Article  Google Scholar 

  88. Jendrzejewska N, Karwowska E (2018) The influence of antibiotics on wastewater treatment processes and the development of antibiotic-resistant bacteria. Water Sci Technol 77(9):2320–2326. https://doi.org/10.2166/wst.2018.153

    Article  CAS  PubMed  Google Scholar 

  89. Mabonga H (2021) Isolation of Escherichia coli and Staphylococcus aureus in surface water sources in Katabi Subcounty, Wakiso District. Student's J of Health Res Africa 2(3):9. https://doi.org/10.51168/sjhrafrica.v2i3.20

    Article  Google Scholar 

  90. Zang C, Huang S, Wu M, Du S, Scholz M, Gao F, Lin C, Guo Y, Dong Y (2011) Comparison of relationships between pH, dissolved oxygen and chlorophyll a for aquaculture and non-aquaculture waters. Water, Air, & Soil Pollut 219:157–174. https://doi.org/10.1007/s11270-010-0695-3

    Article  CAS  Google Scholar 

  91. Bravo-Santano N, Behrends V, Letek M (2019) Host-targeted therapeutics against multidrug resistant intracellular Staphylococcus aureus. Antibiotics 8(4):241. https://doi.org/10.3390/antibiotics8040241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Roberto AA, Gray JBV, Engohang-Ndong J, Leff LG (2019) Distribution and co-occurrence of antibiotic and metal resistance genes in biofilms of an anthropogenically impacted stream. Sci Total Environ 688:437–449. https://doi.org/10.1016/j.scitotenv.2019.06.053

    Article  CAS  PubMed  Google Scholar 

  93. Yi X, Lin C, Ong EJL, Wang M, Li B, Zhou Z (2019) Expression of resistance genes instead of gene abundance are correlated with trace levels of antibiotics in urban surface waters. Environ Pollut 250:437–446. https://doi.org/10.1016/j.envpol.2019.04.035

    Article  CAS  PubMed  Google Scholar 

  94. Zhang H, He H, Chen S, Huang T, Lu K, Zhang Z, Wang R, Zhang X, Li H (2019) Abundance of antibiotic resistance genes and their association with bacterial communities in activated sludge of wastewater treatment plants: geographical distribution and network analysis. J Environ Sci 82:24–38. https://doi.org/10.1016/j.jes.2019.02.023

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Mirelle Garcia Silva Bailão and Dr. Leonardo Luiz Borges for supporting this research.

Funding

This research was funded by Programa Pesquisa para o SUS: gestão compartilhada em saúde—PPSUS (grant number PPSUS proc. 202110267000295), namely Ministério da Saúde (MS), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado de Goiás (FAPEG), and Secretaria de Estado da Saúde (SES-GO); and by Universidade Estadual de Goiás (UEG; Pró-Projetos, grant number 202100020012836). IRS and INMS were supported by scholarships from UEG.

Author information

Authors and Affiliations

Authors

Contributions

Material preparation, data collection, and analysis were performed by Igor Romeiro dos Santos, Isabela Náthaly Machado da Silva, Jerônimo Raimundo de Oliveira Neto, Naiara Raica Lopes de Oliveira, Adriano Roberto Vieira de Sousa, Anielly Monteiro de Melo, Joelma Abadia Marciano de Paula, Luiz Carlos da Cunha, and Elisa Flávia Luiz Cardoso Bailão. The study conception and design were performed by Igor Romeiro dos Santos, Joelma Abadia Marciano de Paula, Cátia Lira do Amaral, Elisângela de Paula Silveira-Lacerda, Luiz Carlos da Cunha, and Elisa Flávia Luiz Cardoso Bailão. The first draft of the manuscript was written by Igor Romeiro dos Santos and Elisa Flávia Luiz Cardoso Bailão, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Elisa Flávia Luiz Cardoso Bailão.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

The author hereby transfers to the publisher the copyright of the work.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Lucy Seldin

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, I.R., da Silva, I.N.M., de Oliveira Neto, J.R. et al. The presence of antibiotics and multidrug-resistant Staphylococcus aureus reservoir in a low-order stream spring in central Brazil. Braz J Microbiol 54, 997–1007 (2023). https://doi.org/10.1007/s42770-023-00973-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-023-00973-9

Keywords

Navigation