Skip to main content
Log in

Identification of natural CTXM-15 inhibitors from aqueous extract of endophytic bacteria Cronobactersakazaki

  • Clinical Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Nyctanthes arbor-tristis is one of India’s valuable and populous medicinal plants which belongs to the family Oleaceae, and widely recognize as night jasmine. Over the years till date, different parts of the plant are used to treat or cure different ailments via various means of traditional medicine. Endophytes are organisms that live in the cell or body of other organisms with no apparent negative impact on the host which they inhabit and are of great source of novel bioactive compounds possessing important economic value. Secondary metabolites were identified in the aqueous extract of Cronobactersakazakii through quantitative phytochemical and GC–MS analysis. Antibacterial activity of the extract against clinical and ATCC strains of E. coli was assessed. Biological activity spectra of these compounds were predicted and categorized either as probably active (Pa) or probably inactive (Pi). Drug-likeness of bioactive compounds was determined as well as their ability to target protein (CTXM-15) responsible for antibiotic resistance in Gram-negative bacteria. Results revealed the presence of active compounds with pharmacological activities and considerable pharmacokinetics parameters. In addition, ligand–protein interactions of compounds with CTXM-15 proteins were identified. These results suggest that bioactive compounds of endophytic Cronobactersakazakii could contain novel chemical entities for the development of antibiotics against pathogenic microbes and other drugs for the amelioration of several infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data will be available on request.

Code availability

Not applicable.

References

  1. Tidke SA, Kiran S, Giridhar P, Gokare RA (2019) Current understanding and future perspectives of endophytic microbes vis-a-vis production of secondary metabolites. In: Jha, S (ed) Endophytes and Secondary Metabolites. Reference Series in Phytochemistry, Springer, Cham. https://doi.org/10.1007/978-3-319-90484-9_12

  2. Makuwa SC, Serepa-Dlamini MH (2021) The antibacterial activity of crude extracts of secondary metabolites from bacterial endophytes associated with Dicomaanomala. Int J Microbiol. https://doi.org/10.1155/2021/8812043

    Article  PubMed  PubMed Central  Google Scholar 

  3. Singh M, Kumar A, Singh R, Pandey KD (2017) Endophytic bacteria: a new source of bioactive compounds. 3 Biotech 7:315. https://doi.org/10.1007/s13205-017-0942-z

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zaman SB, Hussain MA, Nye R, Mehta V, Mamun KT, Hossain N (2017) A review on antibiotic resistance: alarm bells are ringing. Cureus 9:e1403. https://doi.org/10.7759/cureus.1403

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lipp EK, Huq A, Colwell RR (2002) Effects of global climate on infectious disease: the cholera model. ClinMicrobiol Rev 15:757–770. https://doi.org/10.1128/CMR.15.4.757-770.2002

    Article  Google Scholar 

  6. Ogbolu DO, Alli O, Webber MA, Oluremi AS, Oloyede OM (2018) CTX-M-15 is established in most multidrug-resistant uropathogenicEnterobacteriaceae and Pseudomonaceae from hospitals in Nigeria. Eur J MicrobiolImmunol 8:20–24. https://doi.org/10.1556/1886.2017.00012

    Article  CAS  Google Scholar 

  7. McConkey BJ, Sobolev V, Edelman M (2002) The performance of current methods in ligand–protein docking. CurrSci 83:845–856. http://www.jstor.org/stable/24107087

  8. Love EM, Hemalatha S (2022) Biomedical applications of novel green AgNPs synthesized from endophytic bacteria Cronobactersakazakii. Inorg Nano-Met Chem. https://doi.org/10.1080/24701556.2022.2078367

    Article  Google Scholar 

  9. Gonfa T, Teketle S, Kiros T (2020) Effect of extraction solvent on qualitative and quantitative analysis of major phyto-constituents and in-vitro antioxidant activity evaluation of CadabarotundifoliaForssk leaf extracts. Cogent Food Agric 6:1853867. https://doi.org/10.1080/23311932.2020.1853867

    Article  CAS  Google Scholar 

  10. Hossain MA, AL-Raqmi KA, AL-Mijizy ZH, Weli AM, Al-Riyami Q (2013) Study of total phenol, flavonoids contents and phytochemical screening of various leaves crude extracts of locally grown Thymus vulgaris. Asian Pac J Trop Biomed 3:705–710. https://doi.org/10.1016/s2221-1691(13)60142-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Auwal MS, Saka S, Mairiga IA, Sanda KA, Shuaibu A, Ibrahim A (2014) Preliminary phytochemical and elemental analysis of aqueous and fractionated pod extracts of Acacia nilotica (Thorn mimosa). Vet Res Forum 5:95–100

    PubMed  PubMed Central  Google Scholar 

  12. Nair DN, Padmavathy S (2014) Impact of endophytic microorganisms on plants, environment and humans. ScientificWorldJ. https://doi.org/10.1155/2014/250693

    Article  Google Scholar 

  13. Yuan M, He H, Xiao L, Zhong T, Liu H, Li S, Deng P, Ye Z, Jing Y (2014) Enhancement of Cd phytoextraction by two Amaranthus species with endophyticRahnella sp. JN27. Chemosphere 103:99–104. https://doi.org/10.1016/j.chemosphere.2013.11.040

    Article  CAS  PubMed  Google Scholar 

  14. Zinniel DK, Lambrecht P, Harris NB, Feng Z, Kuczmarski D, Higley P, Ishimaru CA, Arunakumari A, Barletta RG, Vidaver AK (2002) Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Appl Environ Microbiol 68:2198–2208. https://doi.org/10.1128/AEM.68.5.2198-2208.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Photolo MM, Mavumengwana V, Sitole L, Tlou MG (2020) Antimicrobial and antioxidant properties of a bacterial endophyte, Methylobacteriumradiotolerans MAMP 4754, isolated from Combretumerythrophyllum seeds. Int J Microbiol. https://doi.org/10.1155/2020/9483670

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gulshan B, Ka S, Parul G (2015) A comprehensive review on Nyctanthesarbortristis. Int J Drug Dev Res 7:183–193

    CAS  Google Scholar 

  17. Saikkonen K, Wäli P, Helander M, Faeth SH (2004) Evolution of endophyte-plant symbioses. Trends Plant Sci 9:275–280. https://doi.org/10.1016/j.tplants.2004.04.005

    Article  CAS  PubMed  Google Scholar 

  18. Mohamad OAA, Li L, Ma JB et al (2018) Evaluation of the antimicrobial activity of endophytic bacterial populations from Chinese traditional medicinal plant Licorice and characterization of the bioactive secondary metabolites produced by Bacillus atrophaeus against Verticilliumdahliae. Front Microbiol 9:924. https://doi.org/10.3389/fmicb.2018.00924

    Article  PubMed  PubMed Central  Google Scholar 

  19. Santos PJ, Savi DC, Gomes RR et al (2016) Diaportheendophytica and D. terebinthifolii from medicinal plants for biological control of Phyllostictacitricarpa. Microbiol Res 186–187:153–160. https://doi.org/10.1016/j.micres.2016.04.002

    Article  PubMed  Google Scholar 

  20. Kusari S, Pandey SP, Spiteller M (2013) Untapped mutualistic paradigms linking host plant and endophytic fungal production of similar bioactive secondary metabolites. Phytochemistry 91:81–87. https://doi.org/10.1016/j.phytochem.2012.07.021

    Article  CAS  PubMed  Google Scholar 

  21. Beiranvand M, Amin M, Hashemi-Shahraki A, Romani B, Yaghoubi S, Sadeghi P (2017) Antimicrobial activity of endophytic bacterial populations isolated from medical plants of Iran. Iran J Microbiol 9:11–18

    PubMed  PubMed Central  Google Scholar 

  22. Riyadi PH, Tanod WA, Wahyudi D, Susanto E, Fahmi AS, Aisiah S (2020) Potential of tilapia (Oreochromisniloticus) viscera bioactive peptides as antiviral for SARS-CoV-2 (COVID 19). IOP ConfSer: Earth Environ Sci 584:012004. https://doi.org/10.1088/1755-1315/584/1/012004

    Article  Google Scholar 

  23. Filimonov DA, Lagunin AA, Gloriozova TA, Rudik AV, Druzhilovskii DS, Pogodin PV, Poroikov VV (2014) Prediction of the biological activity spectra of organic compounds using the PASS online web resource. ChemHeterocycl Comp 50:444–457. https://doi.org/10.1007/s10593-014-1496-1

    Article  CAS  Google Scholar 

  24. Nakashima T, Iwatsuki M, Ochiai J, Kamiya Y, Nagai K, Matsumoto A, Ishiyama A, Otoguro K, Shiomi K, Takahashi Y, Ōmura S (2014) Mangromicins A and B: structure and antitrypanosomal activity of two new cyclopentadecane compounds from Lechevalieriaaerocolonigenes K10–0216. J Antibiot 67:253–260. https://doi.org/10.1038/ja.2013.129

    Article  CAS  Google Scholar 

  25. Nandhini SU, Sangareshwari S, Lata K (2015) Gas chromatography-mass spectrometry analysis of bioactive constituents from the marine streptomyces. Asian J Pharm Clin Res 8:244–246

    CAS  Google Scholar 

  26. Mou Y, Meng J, Fu X, Wang X, Tian J, Wang M, Peng Y, Zhou L (2013) Antimicrobial and antioxidant activities and effect of 1-hexadecene addition on palmarumycin C2 and C3 yields in liquid culture of endophytic fungus Berkleasmium sp. Dzf12. Molecules 18:15587–15599. https://doi.org/10.3390/molecules181215587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Srivastava SK, Singh SV (2004) Cell cycle arrest, apoptosis induction and inhibition of nuclear factor kappa B activation in anti-proliferative activity of benzyl isothiocyanate against human pancreatic cancer cells. Carcinogenesis 25:1701–1709. https://doi.org/10.1093/carcin/bgh179

    Article  CAS  PubMed  Google Scholar 

  28. Nazemi M, Khoshkhoo Z, Motalebi A, Karim H (2010) Identification non polar component and antibacterial activities of Iophonlaevistylus from Persian Gulf. Int J Environ SciDev 6:92–197

    Google Scholar 

  29. Ser HL, Palanisamy UD, Yin WF, AbdMalek SN, Chan KG, Goh BH, Lee LH (2015) Presence of antioxidative agent, Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro- in newly isolated Streptomyces mangrovisoli sp. nov. Front Microbiol 6:854. https://doi.org/10.3389/fmicb.2015.00854

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kiran GS, Priyadharsini S, Sajayan A, Ravindran A, Selvin J (2018) An antibiotic agent pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro isolated from a marine bacteria Bacillus tequilensis MSI45 effectively controls multi-drug resistant Staphylococcus aureus. RSC Adv 8:17837–17846. https://doi.org/10.1039/c8ra00820e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kong HG, Shin TS, Kim TH, Ryu CM (2018) Stereoisomers of the bacterial volatile compound 2,3-Butanediol differently elicit systemic defense responses of pepper against multiple viruses in the field. Front Plant Sci 9:90. https://doi.org/10.3389/fpls.2018.00090

    Article  PubMed  PubMed Central  Google Scholar 

  32. Song CW, Park JM, Chung SC, Lee SY, Song H (2019) Microbial production of 2,3-butanediol for industrial applications. J IndMicrobiolBiotechnol 46:1583–1601. https://doi.org/10.1007/s10295-019-02231-0

    Article  CAS  Google Scholar 

  33. Maria ME, Nada AA, DiaEldin AE, Martin RPJ, Mohamed EH (2021) Bioactive pyrrole-pyrazine derivative from a novel Bacillus species and review of the literature. Afr J PharmPharmacol 15:138–215. https://doi.org/10.5897/AJPP2021.5241

    Article  Google Scholar 

  34. Alakomi HL, Skyttä E, Saarela M, Mattila-Sandholm T, Latva-Kala K, Helander IM (2000) Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane. Appl Environ Microbiol 66:2001–2005. https://doi.org/10.1128/AEM.66.5.2001-2005.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sarada K, Jothibai MR, Mohan VR (2011) GC–MS determination of bioactive components of Naringicrenulata (Roxb) Nicolson. Int J Chem Tech Res 3:1548–1555

    CAS  Google Scholar 

  36. Halstead FD, Rauf M, Moiemen NS, Bamford A, Wearn CM, Fraise AP, Lund PA, Oppenheim BA, Webber MA (2015) The antibacterial activity of acetic acid against biofilm-producing pathogens of relevance to burns patients. PloS One 10:e0136190. https://doi.org/10.1371/journal.pone.0136190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zinn MK, Bockmühl D (2020) Did granny know best? Evaluating the antibacterial, antifungal and antiviral efficacy of acetic acid for home care procedures. BMC Microbiol 20:265. https://doi.org/10.1186/s12866-020-01948-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45:2615–2623. https://doi.org/10.1021/jm020017n

    Article  CAS  PubMed  Google Scholar 

  39. Daina A, Zoete V (2016) A BOILED-egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem 11:1117–1121. https://doi.org/10.1002/cmdc.201600182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lin JH, Yamazaki M (2003) Role of P-glycoprotein in pharmacokinetics: clinical implications. ClinPharmacokinet 42:59–98. https://doi.org/10.2165/00003088-200342010-00003

    Article  CAS  Google Scholar 

  41. Amin ML (2013) P-glycoprotein inhibition for optimal drug delivery. Drug Target Insights 7:27–34. https://doi.org/10.4137/DTI.S12519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mendie LE, Hemalatha S (2022) Molecular docking of phytochemicals targeting GFRs as therapeutic sites for cancer: an in silico study. ApplBiochemBiotechnol 194:215–231. https://doi.org/10.1007/s12010-021-03791-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

All authors are thankful to B.S. Abdur Rahman Crescent Institute of Science and Technology for providing the facilities for study.

Author information

Authors and Affiliations

Authors

Contributions

SH conceived and designed the study. LEM performed the experiment, collected data, analyzed and interpreted data, and drafted the first manuscript. SH reviewed and edited the article. Both authors agreed to the final approval of the version to be submitted.

Corresponding author

Correspondence to S. Hemalatha.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors read and approved the manuscript for publication.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Luis Augusto Nero

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edet, M.L., Hemalatha, S. Identification of natural CTXM-15 inhibitors from aqueous extract of endophytic bacteria Cronobactersakazaki. Braz J Microbiol 54, 827–839 (2023). https://doi.org/10.1007/s42770-023-00945-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-023-00945-z

Keywords

Navigation