Skip to main content

Advertisement

Log in

The Determination, Monitoring, Molecular Mechanisms and Formation of Biofilm in E. coli

  • Environmental Microbiology - Review
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Biofilms are cell assemblies embedded in an exopolysaccharide matrix formed by microorganisms of a single or many different species. This matrix in which they are embedded protects the bacteria from external influences and antimicrobial effects. The biofilm structure that microorganisms form to protect themselves from harsh environmental conditions and survive is found in nature in many different environments. These environments where biofilm formation occurs have in common that they are in contact with fluids. The gene expression of bacteria in complex biofilm differs from that of bacteria in the planktonic state. The differences in biofilm cell expression are one of the effects of community life. Means of quorum sensing, bacteria can act in coordination with each other. At the same time, while biofilm formation provides many benefits to bacteria, it has positive and negative effects in many different areas. Depending on where they occur, biofilms can cause serious health problems, contamination risks, corrosion, and heat and efficiency losses. However, they can also be used in water treatment plants, bioremediation, and energy production with microbial fuel cells. In this review, the basic steps of biofilm formation and biofilm regulation in the model organism Escherichia coli were discussed. Finally, the methods by which biofilm formation can be detected and monitored were briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Darcan C (2012) Expression of OmpC and OmpF porin proteins and survival of Escherichia coli under photooxidative stress in Black Sea water. Aquat Biol 17(2):97–105

    Article  Google Scholar 

  2. Darcan C, Aydin E (2012) fur− mutation increases the survival time of Escherichia coli under photooxidative stress in aquatic environments. Acta Biol Hung 63(3):399–409

    Article  CAS  PubMed  Google Scholar 

  3. Idil O, Darcan C, Ozkanca R (2011) The effect of UV-A and different wavelengths of visible lights on survival of Salmonella typhimurium in seawater microcosms. Journal of Pure and Applied Microbiology 5(2):581–592

    Google Scholar 

  4. Kılıçaslan GÇ, Kaygusuz Ö, Önder İ, Darcan C (2021) Investigation of the Role of cyaA/crp Genes of Escherichia coli in Metal Stress. Adıyaman University Journal of Science 11(1):1–22

    Google Scholar 

  5. Pu Y, Li Y, Jin X, Tian T, Ma Q, Zhao Z, Lin S-y, Chen Z, Li B, Yao G (2019) ATP-dependent dynamic protein aggregation regulates bacterial dormancy depth critical for antibiotic tolerance. Mol Cell 73(1):143–156

    Article  CAS  PubMed  Google Scholar 

  6. Touchette MH, Benito de la Puebla H, Ravichandran P, Shen A (2019) SpoIVA-SipL complex formation is essential for Clostridioides difficile spore assembly. J Bacteriol 201(8):e00042–e00019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tu C, Chen T, Zhou Q, Liu Y, Wei J, Waniek JJ, Luo Y (2020) Biofilm formation and its influences on the properties of microplastics as affected by exposure time and depth in the seawater. Sci Total Environ 734:139237

    Article  CAS  PubMed  Google Scholar 

  8. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49(1):711–745

    Article  CAS  PubMed  Google Scholar 

  9. Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284(5418):1318–1322

    Article  CAS  PubMed  Google Scholar 

  10. O’Toole G, Kaplan HB, Kolter R (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54(1):49–79

    Article  PubMed  Google Scholar 

  11. Satpathy S, Sen SK, Pattanaik S, Raut S (2016) Review on bacterial biofilm: An universal cause of contamination. Biocatalysis and agricultural biotechnology 7:56–66

    Article  Google Scholar 

  12. Gram L, Bagge-Ravn D, Ng YY, Gymoese P, Vogel BF (2007) Influence of food soiling matrix on cleaning and disinfection efficiency on surface attached Listeria monocytogenes. Food Control 18(10):1165–1171

    Article  CAS  Google Scholar 

  13. Pinel I, Biškauskaitė R, Pal’ová E, Vrouwenvelder H, van Loosdrecht M (2021) Assessment of the impact of temperature on biofilm composition with a laboratory heat exchanger module. Microorganisms 9(6):1185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Muhammad MH, Idris AL, Fan X, Guo Y, Yu Y, Jin X, Qiu J, Guan X, Huang T (2020) Beyond risk: bacterial biofilms and their regulating approaches. Front Microbiol 11:928

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kostakioti M, Hadjifrangiskou M, Hultgren SJ (2013) Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harbor perspectives in medicine 3(4):a010306

    Article  PubMed  PubMed Central  Google Scholar 

  16. Rabin N, Zheng Y, Opoku-Temeng C, Du Y, Bonsu E, Sintim HO (2015) Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Med Chem 7(4):493–512

    Article  CAS  PubMed  Google Scholar 

  17. Sharma G, Sharma S, Sharma P, Chandola D, Dang S, Gupta S, Gabrani R (2016) Escherichia coli biofilm: development and therapeutic strategies. J Appl Microbiol 121(2):309–319

    Article  CAS  PubMed  Google Scholar 

  18. Elfazazi K, Zahir H, Tankiouine S, Mayoussi B, Zanane C, Lekchiri S, Ellouali M, Mliji EM (2021) Latrache H (2021) Adhesion Behavior of Escherichia coli Strains on Glass: Role of Cell Surface Qualitative and Quantitative Hydrophobicity in Their Attachment Ability. International Journal of Microbiology

  19. Bhagwat G, O’Connor W, Grainge I, Palanisami T (2021) Understanding the fundamental basis for biofilm formation on plastic surfaces: role of conditioning films. Front Microbiol 12:1615

    Article  Google Scholar 

  20. Oder M, Arlič M, Bohinc K, Fink R (2018) Escherichia coli biofilm formation and dispersion under hydrodynamic conditions on metal surfaces. Int J Environ Health Res 28(1):55–63

    Article  CAS  PubMed  Google Scholar 

  21. Kim Y, Kim H, Beuchat L, Ryu JH (2018) Inhibition of Escherichia coli O157: H7 on stainless steel using Pseudomonas veronii biofilms. Lett Appl Microbiol 66(5):394–399

    Article  CAS  PubMed  Google Scholar 

  22. Li X, Sun L, Zhang P, Wang Y (2021) Novel approaches to combat medical device-associated biofilms. Coatings 11(3):294

    Article  Google Scholar 

  23. Ashrafi M, Novak-Frazer L, Bates M, Baguneid M, Alonso-Rasgado T, Xia G, Rautemaa-Richardson R, Bayat A (2018) Validation of biofilm formation on human skin wound models and demonstration of clinically translatable bacteria-specific volatile signatures. Sci Rep 8(1):1–16

    Article  CAS  Google Scholar 

  24. Ciulla M, Di Stefano A, Marinelli L, Cacciatore I, Di Biase G (2018) RNAIII inhibiting peptide (RIP) and derivatives as potential tools for the treatment of S. aureus biofilm infections. Curr Top Med Chem 18(24):2068–2079

    Article  CAS  PubMed  Google Scholar 

  25. Sheng H, Xue Y, Zhao W, Hovde CJ, Minnich SA (2020) Escherichia coli O157: H7 curli fimbriae promotes biofilm formation, epithelial cell invasion, and persistence in cattle. Microorganisms 8(4):580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mathlouthi A, Pennacchietti E, De BD (2018) Effect of temperature, pH and plasmids on in vitro biofilm formation in Escherichia coli. Acta Naturae (русскоязычная версия) 10:129–132

    Article  CAS  PubMed  Google Scholar 

  27. Janjaroen D, Ling F, Monroy G, Derlon N, Mogenroth E, Boppart SA, Liu W-T, Nguyen TH (2013) Roles of ionic strength and biofilm roughness on adhesion kinetics of Escherichia coli onto groundwater biofilm grown on PVC surfaces. Water Res 47(7):2531–2542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vogeleer P, Tremblay YD, Mafu AA, Jacques M, Harel J (2014) Life on the outside: role of biofilms in environmental persistence of Shiga-toxin producing Escherichia coli. Front Microbiol 5:317

    Article  PubMed  PubMed Central  Google Scholar 

  29. Krsmanovic M, Biswas D, Ali H, Kumar A, Ghosh R, Dickerson AK (2021) Hydrodynamics and surface properties influence biofilm proliferation. Adv Colloid Interf Sci 288:102336

    Article  CAS  Google Scholar 

  30. Garrett TR, Bhakoo M, Zhang Z (2008) Bacterial adhesion and biofilms on surfaces. Prog Nat Sci 18(9):1049–1056

    Article  CAS  Google Scholar 

  31. van Wolferen M, Orell A, Albers S-V (2018) Archaeal biofilm formation. Nat Rev Microbiol 16(11):699–713

    Article  PubMed  Google Scholar 

  32. Haiko J, Westerlund-Wikström B (2013) The role of the bacterial flagellum in adhesion and virulence. Biology 2(4):1242–1267

    Article  PubMed  PubMed Central  Google Scholar 

  33. Klausen M, Heydorn A, Ragas P, Lambertsen L, Aaes-Jørgensen A, Molin S, Tolker-Nielsen T (2003) Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol 48(6):1511–1524

    Article  CAS  PubMed  Google Scholar 

  34. Lemon KP, Higgins DE, Kolter R (2007) Flagellar motility is critical for Listeria monocytogenes biofilm formation. J Bacteriol 189(12):4418–4424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. O'Toole GA, Kolter R (1998) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30(2):295–304

    Article  CAS  PubMed  Google Scholar 

  36. Pratt LA, Kolter R (1998) Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30(2):285–293

    Article  CAS  PubMed  Google Scholar 

  37. Toutain CM, Caizza NC, Zegans ME, O'Toole GA (2007) Roles for flagellar stators in biofilm formation by Pseudomonas aeruginosa. Res Microbiol 158(5):471–477

    Article  CAS  PubMed  Google Scholar 

  38. Watnick PI, Kolter R (1999) Steps in the development of a Vibrio cholerae El Tor biofilm. Mol Microbiol 34(3):586–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Vatanyoopaisarn S, Nazli A, Dodd CE, Rees CE, Waites WM (2000) Effect of flagella on initial attachment of Listeria monocytogenes to stainless steel. Appl Environ Microbiol 66(2):860–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Beloin C, Roux A, Ghigo J-M (2008) Escherichia coli biofilms. Bacterial biofilms:249–289

  41. Anderson GG, Moreau-Marquis S, Stanton BA, O'Toole GA (2008) In vitro analysis of tobramycin-treated Pseudomonas aeruginosa biofilms on cystic fibrosis-derived airway epithelial cells. Infect Immun 76(4):1423–1433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Banin E, Vasil ML, Greenberg EP (2005) Iron and Pseudomonas aeruginosa biofilm formation. Proc Natl Acad Sci 102(31):11076–11081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wu Y, Outten FW (2009) IscR controls iron-dependent biofilm formation in Escherichia coli by regulating type I fimbria expression. J Bacteriol 191(4):1248–1257

    Article  CAS  PubMed  Google Scholar 

  44. Arciola CR, Campoccia D, Montanaro L (2018) Implant infections: adhesion, biofilm formation and immune evasion. Nat Rev Microbiol 16(7):397–409

    Article  CAS  PubMed  Google Scholar 

  45. Bos R, Van der Mei HC, Busscher HJ (1999) Physico-chemistry of initial microbial adhesive interactions–its mechanisms and methods for study. FEMS Microbiol Rev 23(2):179–230

    Article  CAS  PubMed  Google Scholar 

  46. Ruhal R, Kataria R (2021) Biofilm patterns in gram-positive and gram-negative bacteria. Microbiol Res 251:126829

    Article  CAS  PubMed  Google Scholar 

  47. Berne C, Ducret A, Hardy GG, Brun YV (2015) Adhesins involved in attachment to abiotic surfaces by Gram-negative bacteria. Microbial biofilms, pp 163–199

    Google Scholar 

  48. Carniello V, Peterson BW, van der Mei HC, Busscher HJ (2018) Physico-chemistry from initial bacterial adhesion to surface-programmed biofilm growth. Adv Colloid Interf Sci 261:1–14

    Article  CAS  Google Scholar 

  49. Petrova OE, Schurr JR, Schurr MJ, Sauer K (2012) Microcolony formation by the opportunistic pathogen P seudomonas aeruginosa requires pyruvate and pyruvate fermentation. Mol Microbiol 86(4):819–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Konto-Ghiorghi Y, Mairey E, Mallet A, Duménil G, Caliot E, Trieu-Cuot P, Dramsi S (2009) Dual role for pilus in adherence to epithelial cells and biofilm formation in Streptococcus agalactiae. PLoS Pathog 5(5):e1000422

    Article  PubMed  PubMed Central  Google Scholar 

  51. Maldarelli GA, Piepenbrink KH, Scott AJ, Freiberg JA, Song Y, Achermann Y, Ernst RK, Shirtliff ME, Sundberg EJ, Donnenberg MS (2016) Type IV pili promote early biofilm formation by Clostridium difficile. FEMS Pathogens and Disease 74(6):ftw061

    Article  Google Scholar 

  52. Pakharukova N, Tuittila M, Paavilainen S, Malmi H, Parilova O, Teneberg S, Knight SD, Zavialov AV (2018) Structural basis for Acinetobacter baumannii biofilm formation. Proc Natl Acad Sci 115(21):5558–5563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Carter MQ, Louie JW, Feng D, Zhong W, Brandl MT (2016) Curli fimbriae are conditionally required in Escherichia coli O157: H7 for initial attachment and biofilm formation. Food Microbiol 57:81–89

    Article  PubMed  Google Scholar 

  54. Heras B, Totsika M, Peters KM, Paxman JJ, Gee CL, Jarrott RJ, Perugini MA, Whitten AE, Schembri MA (2014) The antigen 43 structure reveals a molecular Velcro-like mechanism of autotransporter-mediated bacterial clumping. Proc Natl Acad Sci 111(1):457–462

    Article  CAS  PubMed  Google Scholar 

  55. Wood TK (2009) Insights on Escherichia coli biofilm formation and inhibition from whole-transcriptome profiling. Environ Microbiol 11(1):1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Karatan E, Watnick P (2009) Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev 73(2):310–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Abraham W-R (2016) Going beyond the control of quorum-sensing to combat biofilm infections. Antibiotics 5(1):3

    Article  PubMed  PubMed Central  Google Scholar 

  58. Li Y-H, Tian X (2012) Quorum sensing and bacterial social interactions in biofilms. Sensors 12(3):2519–2538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Papenfort K, Bassler BL (2016) Quorum sensing signal–response systems in Gram-negative bacteria. Nat Rev Microbiol 14(9):576–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Costa OY, Raaijmakers JM, Kuramae EE (2018) Microbial extracellular polymeric substances: ecological function and impact on soil aggregation. Front Microbiol 9:1636

    Article  PubMed  PubMed Central  Google Scholar 

  61. Fahs A, Quilès F, Jamal D, Humbert F, Gg F (2014) In situ analysis of bacterial extracellular polymeric substances from a Pseudomonas fluorescens biofilm by combined vibrational and single molecule force spectroscopies. J Phys Chem B 118(24):6702–6713

    Article  CAS  PubMed  Google Scholar 

  62. Flemming H-C (2016) EPS—then and now. Microorganisms 4(4):41

    Article  PubMed  PubMed Central  Google Scholar 

  63. Zhao K, Tseng BS, Beckerman B, Jin F, Gibiansky ML, Harrison JJ, Luijten E, Parsek MR, Wong GC (2013) Psl trails guide exploration and microcolony formation in Pseudomonas aeruginosa biofilms. Nature 497(7449):388–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. A Garnett J, Matthews S (2012) Interactions in bacterial biofilm development: a structural perspective. Curr Protein Pept Sci 13(8):739–755

    Article  PubMed  Google Scholar 

  65. Toyofuku M, Inaba T, Kiyokawa T, Obana N, Yawata Y, Nomura N (2016) Environmental factors that shape biofilm formation. Biosci Biotechnol Biochem 80(1):7–12

    Article  CAS  PubMed  Google Scholar 

  66. Yawata Y, Nomura N, Uchiyama H (2008) Development of a novel biofilm continuous culture method for simultaneous assessment of architecture and gaseous metabolite production. Appl Environ Microbiol 74(17):5429–5435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Díaz-Salazar C, Calero P, Espinosa-Portero R, Jiménez-Fernández A, Wirebrand L, Velasco-Domínguez MG, López-Sánchez A, Shingler V, Govantes F (2017) The stringent response promotes biofilm dispersal in Pseudomonas putida. Sci Rep 7(1):1–13

    Article  Google Scholar 

  68. Soto González SM, Marco F, Guiral Vilalta E, Vila Estapé J (2011) Biofilm Formation in Uropathogenic Escherichia coli Strains: Relationship with Urovirulence Factors and Antimicrobial Resistance. Chapter 10 in: Nikibakhsh, Ahmad 2011 Clinical Management of Complicated Urinary Tract Infection ISBN: 978-953-51-6472-2 DOI: 105772/894 pp: 159-170

  69. Já K (2010) Biofilm dispersal: mechanisms, clinical implications, and potential therapeutic uses. J Dent Res 89(3):205–218

    Article  Google Scholar 

  70. Shen D, Langenheder S, Jürgens K (2018) Dispersal modifies the diversity and composition of active bacterial communities in response to a salinity disturbance. Front Microbiol 9:2188

    Article  PubMed  PubMed Central  Google Scholar 

  71. Fleming D, Rumbaugh KP (2017) Approaches to Dispersing Medical Biofilms Microorganisms 5(2):15

    PubMed  Google Scholar 

  72. Lee K, Yoon SS (2017) Pseudomonas aeruginosa biofilm, a programmed bacterial life for fitness.

  73. Markova J, Anganova E, Turskaya A, Bybin V, Savilov E (2018) Regulation of Escherichia coli biofilm formation. Appl Biochem Microbiol 54(1):1–11

    Article  CAS  Google Scholar 

  74. Besharova O, Suchanek VM, Hartmann R, Drescher K, Sourjik V (2016) Diversification of gene expression during formation of static submerged biofilms by Escherichia coli. Front Microbiol 7:1568

    Article  PubMed  PubMed Central  Google Scholar 

  75. Friedlander RS, Vogel N, Aizenberg J (2015) Role of flagella in adhesion of Escherichia coli to abiotic surfaces. Langmuir 31(22):6137–6144

    Article  CAS  PubMed  Google Scholar 

  76. Štaudová B, Micenková L, Bosák J, Hrazdilová K, Slaninková E, Vrba M, Ševčíková A, Kohoutová D, Woznicová V, Bureš J (2015) Determinants encoding fimbriae Type 1 in fecal Escherichia coli are associated with increased frequency of bacteriocinogeny. BMC Microbiol 15(1):1–9

    Article  Google Scholar 

  77. Otto K, Norbeck J, Larsson T, Karlsson K-A, Hermansson M (2001) Adhesion of type 1-fimbriated Escherichia coli to abiotic surfaces leads to altered composition of outer membrane proteins. J Bacteriol 183(8):2445–2453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Otto K, Hermansson M (2004) Inactivation of ompX causes increased interactions of type 1 fimbriated Escherichia coli with abiotic surfaces. J Bacteriol 186(1):226–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Er F (2018) E. coli’deporin proteinlerinin biyofilm oluşumunda rollerinin araştırılması. Bilecik Şeyh Edebali Üniversitesi, Fen Bilimleri Enstitüsü

    Google Scholar 

  80. Liu Z, Niu H, Wu S, Huang R (2014) CsgD regulatory network in a bacterial trait-altering biofilm formation. Emerging microbes & infections 3(1):1–5

    Article  CAS  Google Scholar 

  81. Zakikhany K, Harrington CR, Nimtz M, Hinton JC, Römling U (2010) Unphosphorylated CsgD controls biofilm formation in Salmonella enterica serovar Typhimurium. Mol Microbiol 77(3):771–786

    Article  CAS  PubMed  Google Scholar 

  82. Hu B, Khara P, Christie PJ (2019) Structural bases for F plasmid conjugation and F pilus biogenesis in Escherichia coli. Proc Natl Acad Sci 116(28):14222–14227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Flemming H-C, Wingender J (2010) The biofilm matrix Nature reviews microbiology 8(9):623–633

    Article  CAS  PubMed  Google Scholar 

  84. Echeverz M, García B, Sabalza A, Valle J, Gabaldón T, Solano C, Lasa I (2017) Lack of the PGA exopolysaccharide in Salmonella as an adaptive trait for survival in the host. PLoS Genet 13(5):e1006816

    Article  PubMed  PubMed Central  Google Scholar 

  85. McNamara JT, Morgan JL, Zimmer J (2015) A molecular description of cellulose biosynthesis. Annu Rev Biochem 84:895–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Acheson JF, Ho R, Goularte NF, Cegelski L, Zimmer J (2021) Molecular organization of the E. coli cellulose synthase macrocomplex. Nat Struct Mol Biol 28(3):310–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Serra DO, Richter AM, Hengge R (2013) Cellulose as an architectural element in spatially structured Escherichia coli biofilms. J Bacteriol 195(24):5540–5554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Römling U, Galperin MY (2015) Bacterial cellulose biosynthesis: diversity of operons, subunits, products, and functions. Trends Microbiol 23(9):545–557

    Article  PubMed  PubMed Central  Google Scholar 

  89. Kim H, Kim M, Bai J, Lim J-A, Heu S, Ryu S (2019) Colanic acid is a novel phage receptor of Pectobacterium carotovorum subsp. carotovorum phage POP72. Front Microbiol 10:143

    Article  PubMed  PubMed Central  Google Scholar 

  90. Ranjit DK, Young KD (2016) Colanic acid intermediates prevent de novo shape recovery of Escherichia coli spheroplasts, calling into question biological roles previously attributed to colanic acid. J Bacteriol 198(8):1230–1240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wang C, Zhang H, Wang J, Chen S, Wang Z, Zhao L, Wang X (2020) Colanic acid biosynthesis in Escherichia coli is dependent on lipopolysaccharide structure and glucose availability. Microbiol Res 239:126527

    Article  CAS  PubMed  Google Scholar 

  92. Castelli ME, Véscovi EG (2011) The Rcs signal transduction pathway is triggered by enterobacterial common antigen structure alterations in Serratia marcescens. J Bacteriol 193(1):63–74

    Article  CAS  PubMed  Google Scholar 

  93. Beloin MK, Lindner K, Landini P, Hacker JR, Ghigo J-M, Dobrindt U (2006) The transcriptional antiterminator RfaH represses biofilm formation in Escherichia coli. J Bacteriol 188(4):1316–1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Nord A, Pedaci F (2020) Mechanisms and dynamics of the bacterial flagellar motor. Physical Microbiology, pp 81–100

    Google Scholar 

  95. Belas R (2014) Biofilms, flagella, and mechanosensing of surfaces by bacteria. Trends Microbiol 22(9):517–527

    Article  CAS  PubMed  Google Scholar 

  96. Moreira JM, Gomes LC, Araujo JD, Miranda JM, Simões M, Melo LF, Mergulhão FJ (2013) The effect of glucose concentration and shaking conditions on Escherichia coli biofilm formation in microtiter plates. Chem Eng Sci 94:192–199

    Article  CAS  Google Scholar 

  97. Domka J, Lee J, Bansal T, Wood TK (2007) Temporal gene-expression in Escherichia coli K-12 biofilms. Environ Microbiol 9(2):332–346

    Article  CAS  PubMed  Google Scholar 

  98. Thongbhubate K, Nakafuji Y, Matsuoka R, Kakegawa S, Suzuki H (2021) Effect of spermidine on biofilm formation in Escherichia coli K-12. J Bacteriol 203(10):e00652–e00620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sakamoto A, Terui Y, Yamamoto T, Kasahara T, Nakamura M, Tomitori H, Yamamoto K, Ishihama A, Michael AJ, Igarashi K (2012) Enhanced biofilm formation and/or cell viability by polyamines through stimulation of response regulators UvrY and CpxR in the two-component signal transducing systems, and ribosome recycling factor. Int J Biochem Cell Biol 44(11):1877–1886

    Article  CAS  PubMed  Google Scholar 

  100. Juhna T, Birzniece D, Rubulis J (2007) Effect of phosphorus on survival of Escherichia coli in drinking water biofilms. Appl Environ Microbiol 73(11):3755–3758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Römling U, Gomelsky M, Galperin MY (2005) C-di-GMP: the dawning of a novel bacterial signalling system. Mol Microbiol 57(3):629–639

    Article  PubMed  Google Scholar 

  102. Hufnagel DA, DePas WH, Chapman MR (2014) The disulfide bonding system suppresses CsgD-independent cellulose production in Escherichia coli. J Bacteriol 196(21):3690–3699

    Article  PubMed  PubMed Central  Google Scholar 

  103. Ahmad I, Cimdins A, Beske T, Römling U (2017) Detailed analysis of c-di-GMP mediated regulation of csgD expression in Salmonella typhimurium. BMC Microbiol 17(1):1–12

    Article  Google Scholar 

  104. Suchanek VM, Esteban-López M, Colin R, Besharova O, Fritz K, Sourjik V (2020) Chemotaxis and cyclic-di-GMP signalling control surface attachment of Escherichia coli. Mol Microbiol 113(4):728–739

    Article  CAS  PubMed  Google Scholar 

  105. Wolfe AJ, Chang DE, Walker JD, Seitz-Partridge JE, Vidaurri MD, Lange CF, Prüß BM, Henk MC, Larkin JC, Conway T (2003) Evidence that acetyl phosphate functions as a global signal during biofilm development. Mol Microbiol 48(4):977–988

    Article  CAS  PubMed  Google Scholar 

  106. Steinchen W, Zegarra V, Bange G (2020) (p) ppGpp: magic modulators of bacterial physiology and metabolism. Front Microbiol 11:2072

    Article  PubMed  PubMed Central  Google Scholar 

  107. Bessaiah H, Anamalé C, Sung J, Dozois CM (2021) What Flips the Switch? Signals and Stress Regulating Extraintestinal Pathogenic Escherichia coli Type 1 Fimbriae (Pili). Microorganisms 10(1):5

    Article  PubMed  PubMed Central  Google Scholar 

  108. Durfee T, Hansen A-M, Zhi H, Blattner FR, Jin DJ (2008) Transcription profiling of the stringent response in Escherichia coli. J Bacteriol 190(3):1084–1096

    Article  CAS  PubMed  Google Scholar 

  109. Traxler MF, Summers SM, Nguyen HT, Zacharia VM, Hightower GA, Smith JT, Conway T (2008) The global, ppGpp-mediated stringent response to amino acid starvation in Escherichia coli. Mol Microbiol 68(5):1128–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Girard ME, Gopalkrishnan S, Grace ED, Halliday JA, Gourse RL, Herman C (2017) DksA and ppGpp regulate the σS stress response by activating promoters for the small RNA DsrA and the anti-adapter protein IraP. J Bacteriol 200(2):e00463–e00417

    PubMed  PubMed Central  Google Scholar 

  111. Little DJ, Li G, Ing C, DiFrancesco BR, Bamford NC, Robinson H, Nitz M, Pomès R, Howell PL (2014) Modification and periplasmic translocation of the biofilm exopolysaccharide poly-β-1, 6-N-acetyl-d-glucosamine. Proc Natl Acad Sci 111(30):11013–11018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Sicard J-F, Vogeleer P, Le Bihan G, Rodriguez Olivera Y, Beaudry F, Jacques M, Harel J (2018) N-Acetyl-glucosamine influences the biofilm formation of Escherichia coli. Gut pathogens 10(1):1–10

    Article  Google Scholar 

  113. Debnath I, Norton JP, Barber AE, Ott EM, Dhakal BK, Kulesus RR, Mulvey MA (2013) The Cpx stress response system potentiates the fitness and virulence of uropathogenic Escherichia coli. Infect Immun 81(5):1450–1459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Mitchell AM, Silhavy TJ (2019) Envelope stress responses: balancing damage repair and toxicity. Nat Rev Microbiol 17(7):417–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Raivio TL, Leblanc SK, Price NL (2013) The Escherichia coli Cpx envelope stress response regulates genes of diverse function that impact antibiotic resistance and membrane integrity. J Bacteriol 195(12):2755–2767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Otto K, Silhavy TJ (2002) Surface sensing and adhesion of Escherichia coli controlled by the Cpx-signaling pathway. Proc Natl Acad Sci 99(4):2287–2292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Meng J, Xu J, Huang C, Chen J (2020) Rcs phosphorelay responses to truncated lipopolysaccharide-induced cell envelope stress in Yersinia enterocolitica. Molecules 25(23):5718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ferrières L, Clarke DJ (2003) The RcsC sensor kinase is required for normal biofilm formation in Escherichia coli K-12 and controls the expression of a regulon in response to growth on a solid surface. Mol Microbiol 50(5):1665–1682

    Article  PubMed  Google Scholar 

  119. Kenney LJ, Anand GS (2020) EnvZ/OmpR two-component signaling: an archetype system that can function noncanonically. EcoSal Plus 9(1)

  120. Jubelin G, Vianney A, Beloin C, Ghigo J-M, Lazzaroni J-C, Lejeune P, Dorel C (2005) CpxR/OmpR interplay regulates curli gene expression in response to osmolarity in Escherichia coli. J Bacteriol 187(6):2038–2049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Gottesman S (2019) Trouble is coming: Signaling pathways that regulate general stress responses in bacteria. J Biol Chem 294(31):11685–11700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Styles MJ, Early SA, Tucholski T, West KH, Ge Y, Blackwell HE (2020) Chemical control of quorum sensing in E. coli: identification of small molecule modulators of Sdia and mechanistic characterization of a covalent inhibitor. ACS infectious diseases 6(12):3092–3103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Sturbelle RT, de Avila LFC, Roos TB, Borchardt JL, Dellagostin OA, Leite FPL (2015) The role of quorum sensing in Escherichia coli (ETEC) virulence factors. Vet Microbiol 180(3-4):245–252

    Article  CAS  PubMed  Google Scholar 

  124. Verbeke F, De Craemer S, Debunne N, Janssens Y, Wynendaele E, Van de Wiele C, De Spiegeleer B (2017) Peptides as quorum sensing molecules: measurement techniques and obtained levels in vitro and in vivo. Front Neurosci 11:183

    Article  PubMed  PubMed Central  Google Scholar 

  125. Walters M, Sircili MP, Sperandio V (2006) AI-3 synthesis is not dependent on luxS in Escherichia coli. J Bacteriol 188(16):5668–5681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zohar B-A, Kolodkin-Gal I (2015) Quorum sensing in Escherichia coli: interkingdom, inter-and intraspecies dialogues, and a suicide-inducing peptide. Quorum sensing vs quorum quenching: a battle with no end in sight. Springer, pp 85–99

    Book  Google Scholar 

  127. Hernandez DE, Sintim HO (2020) Quorum sensing autoinducer-3 finally yields to structural elucidation. ACS Publications

    Book  Google Scholar 

  128. Roy R, Tiwari M, Donelli G, Tiwari V (2018) Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence 9(1):522–554

    Article  CAS  PubMed  Google Scholar 

  129. Hassan A, Usman J, Kaleem F, Omair M, Khalid A, Iqbal M (2011) Evaluation of different detection methods of biofilm formation in the clinical isolates. Braz J Infect Dis 15(4):305–311

    Article  PubMed  Google Scholar 

  130. Christensen GD, Simpson WA, Bisno AL, Beachey EH (1982) Adherence of slime-producing strains of Staphylococcus epidermidis to smooth surfaces. Infect Immun 37(1):318–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Panda PS, Chaudhary U, Dube SK (2016) Comparison of four different methods for detection of biofilm formation by uropathogens. Indian J Pathol Microbiol 59(2):177

    Article  PubMed  Google Scholar 

  132. Coffey BM, Anderson GG (2014) Biofilm formation in the 96-well microtiter plate. Pseudomonas Methods and Protocols. Springer, pp 631–641

    Book  Google Scholar 

  133. Nasr RA, AbuShady HM, Hussein HS (2012) Biofilm formation and presence of icaAD gene in clinical isolates of staphylococci. Egyptian journal of medical human genetics 13(3):269–274

    Article  CAS  Google Scholar 

  134. Reichhardt C, Ferreira JA, Joubert L-M, Clemons KV, Stevens DA, Cegelski L (2015) Analysis of the Aspergillus fumigatus biofilm extracellular matrix by solid-state nuclear magnetic resonance spectroscopy. Eukaryot Cell 14(11):1064–1072

    Article  PubMed  PubMed Central  Google Scholar 

  135. Satorres SE, Alcaráz LE (2007) Prevalence of icaA and icaD genes in Staphylococcus aureus and Staphylococcus epidermidis strains isolated from patients and hospital staff. Cent Eur J Public Health 15(2)

  136. Azeredo J, Azevedo NF, Briandet R, Cerca N, Coenye T, Costa AR, Desvaux M, Di Bonaventura G, Hébraud M, Jaglic Z (2017) Critical review on biofilm methods. Crit Rev Microbiol 43(3):313–351

    Article  CAS  PubMed  Google Scholar 

  137. Fletcher M (1977) The effects of culture concentration and age, time, and temperature on bacterial attachment to polystyrene. Can J Microbiol 23(1):1–6

    Article  Google Scholar 

  138. Sultan A, Nabiel Y (2019) Tube method and Congo red agar versus tissue culture plate method for detection of biofilm production by uropathogens isolated from midstream urine: Which one could be better? Afr J Clin Exp Microbiol 20(1):60–66

    Article  Google Scholar 

  139. Ceri H, Olson ME, Stremick C, Read R, Morck D, Buret A (1999) The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol 37(6):1771–1776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Ali L, Khambaty F, Diachenko G (2006) Investigating the suitability of the Calgary Biofilm Device for assessing the antimicrobial efficacy of new agents. Bioresour Technol 97(15):1887–1893

    Article  CAS  PubMed  Google Scholar 

  141. Macia M, Rojo-Molinero E, Oliver A (2014) Antimicrobial susceptibility testing in biofilm-growing bacteria. Clin Microbiol Infect 20(10):981–990

    Article  CAS  PubMed  Google Scholar 

  142. Goeres DM, Hamilton MA, Beck NA, Buckingham-Meyer K, Hilyard JD, Loetterle LR, Lorenz LA, Walker DK, Stewart PS (2009) A method for growing a biofilm under low shear at the air–liquid interface using the drip flow biofilm reactor. Nat Protoc 4(5):783–788

    Article  CAS  PubMed  Google Scholar 

  143. Agostinho A, Hartman A, Lipp C, Parker AE, Stewart PS, James GA (2011) An in vitro model for the growth and analysis of chronic wound MRSA biofilms. J Appl Microbiol 111(5):1275–1282

    Article  CAS  PubMed  Google Scholar 

  144. Kornegay BH, Andrews JF (1968) Kinetics of fixed-film biological reactors. Journal (Water Pollution Control Federation), pp R460–R468

    Google Scholar 

  145. Lawrence JR, Swerhone GD, Neu T (2000) A simple rotating annular reactor for replicated biofilm studies. J Microbiol Methods 42(3):215–224

    Article  CAS  PubMed  Google Scholar 

  146. Pavarina A, Dovigo L, Sanitá P, Machado A, Giampaolo E, Vergani C (2011) Dynamic models for in vitro biofilm formation. In: Biofilms: formation, development and properties, 1st edn. Nova Science Publishers, Inc, Hauppauge, NY

    Google Scholar 

  147. Coenye T, Nelis HJ (2010) In vitro and in vivo model systems to study microbial biofilm formation. J Microbiol Methods 83(2):89–105

    Article  CAS  PubMed  Google Scholar 

  148. Willcock L, Gilbert P, Holah J, Wirtanen G, Allison D (2000) A new technique for the performance evaluation of clean-in-place disinfection of biofilms. J Ind Microbiol Biotechnol 25(5):235–241

    Article  CAS  Google Scholar 

  149. Peterson SB, Irie Y, Borlee BR, Murakami K, Harrison JJ, Colvin KM, Parsek MR (2011) Different methods for culturing biofilms in vitro. Biofilm infections. Springer, pp 251–266

    Google Scholar 

  150. Lewandowski Z, Beyenal H (2013) Fundamentals of biofilm research. CRC press

    Book  Google Scholar 

  151. Lee J-H, Kaplan JB, Lee WY (2008) Microfluidic devices for studying growth and detachment of Staphylococcus epidermidis biofilms. Biomed Microdevices 10(4):489–498

    Article  CAS  PubMed  Google Scholar 

  152. Madou MJ (2011) Manufacturing techniques for microfabrication and nanotechnology. CRC press

    Book  Google Scholar 

  153. Humbert F, Quilès F (2011) In-situ study of early stages of biofilm formation under different environmental stresses by ATR-FTIR spectroscopy. Science against microbial pathogens: communicating current research and technological advances 1:889–895

    Google Scholar 

  154. Paquet-Mercier F, Safdar M, Parvinzadeh M, Greener J (2014) Emerging spectral microscopy techniques and applications to biofilm detection. Microscopy: Advances in Scientific Research and Education, A Méndez-Vilas, ed Badajoz, Spain. Formatex Research Center 2:638–649

    Google Scholar 

  155. de Carvalho CC, da Fonseca MMR (2007) Assessment of three-dimensional biofilm structure using an optical microscope. BioTechniques 42(5):616–620

    Article  PubMed  Google Scholar 

  156. Relucenti M, Familiari G, Donfrancesco O, Taurino M, Li X, Chen R, Artini M, Papa R, Selan L (2021) Microscopy methods for biofilm imaging: focus on SEM and VP-SEM pros and cons. Biology 10(1):51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Beaussart A, El-Kirat-Chatel S, Sullan RMA, Alsteens D, Herman P, Derclaye S, Dufrêne YF (2014) Quantifying the forces guiding microbial cell adhesion using single-cell force spectroscopy. Nat Protoc 9(5):1049–1055

    Article  CAS  PubMed  Google Scholar 

  158. Reifenberger RG, Baró AM (2012) Atomic force microscopy in liquid: biological applications. John Wiley & Sons

    Google Scholar 

  159. Zeng G, Müller T, Meyer RL (2014) Single-cell force spectroscopy of bacteria enabled by naturally derived proteins. Langmuir 30(14):4019–4025

    Article  CAS  PubMed  Google Scholar 

  160. Thornton RB, Rigby PJ, Wiertsema SP, Filion P, Langlands J, Coates HL, Vijayasekaran S, Keil AD, Richmond PC (2011) Multi-species bacterial biofilm and intracellular infection in otitis media. BMC Pediatr 11(1):1–10

    Article  Google Scholar 

  161. Bridier A, Briandet R, Bouchez T, Jabot F (2014) A model-based approach to detect interspecific interactions during biofilm development. Biofouling 30(7):761–771

    Article  PubMed  Google Scholar 

  162. Hung C, Zhou Y, Pinkner JS, Dodson KW, Crowley JR, Heuser J, Chapman MR, Hadjifrangiskou M, Henderson JP, Hultgren SJ (2013) Escherichia coli biofilms have an organized and complex extracellular matrix structure. MBio 4(5):e00645–e00613

    Article  PubMed  PubMed Central  Google Scholar 

  163. Rodrigues D, Bañobre-López M, Espiña B, Rivas J, Azeredo J (2013) Effect of magnetic hyperthermia on the structure of biofilm and cellular viability of a food spoilage bacterium. Biofouling 29(10):1225–1232

    Article  CAS  PubMed  Google Scholar 

  164. Bossù M, Selan L, Artini M, Relucenti M, Familiari G, Papa R, Vrenna G, Spigaglia P, Barbanti F, Salucci A (2020) Characterization of Scardovia wiggsiae biofilm by original scanning electron microscopy protocol. Microorganisms 8(6):807

    Article  PubMed  PubMed Central  Google Scholar 

  165. Chao Y, Zhang T (2012) Surface-enhanced Raman scattering (SERS) revealing chemical variation during biofilm formation: from initial attachment to mature biofilm. Anal Bioanal Chem 404(5):1465–1475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Charoux CM, Patange AD, Hinds LM, Simpson JC, O’Donnell CP, Tiwari BK (2020) Antimicrobial effects of airborne acoustic ultrasound and plasma activated water from cold and thermal plasma systems on biofilms. Sci Rep 10(1):1–10

    Article  Google Scholar 

  167. Lim ES, Koo OK, Kim M-J, Kim J-S (2019) Bio-enzymes for inhibition and elimination of Escherichia coli O157: H7 biofilm and their synergistic effect with sodium hypochlorite. Sci Rep 9(1):1–10

    Article  Google Scholar 

Download references

Availability of data and material

Not applicable

Code availability

Not applicable

Funding

Not applicable

Author information

Authors and Affiliations

Authors

Contributions

Fırat Yavuz Öztürk: investigation, writing—original draft, writing—review and editing. Cihan Darcan: investigation, writing—review and editing. Ergin Kariptaş: investigation, writing—review and editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Fırat Yavuz Öztürk.

Ethics declarations

Conflicts of interest/Competing interests

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethics approval

Not applicable

Consent to participate

Not applicable

Consent for publication

Not applicable

Additional information

Responsible Editor: Luis Augusto Nero

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Öztürk, F.Y., Darcan, C. & Kariptaş, E. The Determination, Monitoring, Molecular Mechanisms and Formation of Biofilm in E. coli. Braz J Microbiol 54, 259–277 (2023). https://doi.org/10.1007/s42770-022-00895-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-022-00895-y

Keywords

Navigation