Skip to main content
Log in

The AbcCl1 transporter of Colletotrichum lindemuthianum acts as a virulence factor involved in fungal detoxification during common bean (Phaseolus vulgaris) infection

  • Bacterial, Fungal and Virus Molecular Biology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Anthracnose, caused by Colletotrichum lindemuthianum, is a disease affecting the common bean plant, Phaseolus vulgaris. To establish infection, the phytopathogen must survive the toxic compounds (phytoanticipins and phytoalexins) that are produced by the plant as a defense mechanism. To study the detoxification and efflux mechanisms in C. lindemuthianum, the abcCl1 gene, which encodes an ABC transporter, was analyzed. The abcCl1 gene (4558 pb) was predicted to encode a 1450-amino acid protein. Structural analysis of 11 genome sequences from Colletotrichum spp. showed that the number of ABC transporters varied from 34 to 64. AbcCl1 was classified in the ABC-G family of transporters, and it appears to be orthologs to ABC1 from Magnaporthe grisea and FcABC1 from Fusarium culmorum, which are involved in pleiotropic drug resistance. A abcT3 (ΔabcCl1) strain showed reduction on aggressivity when inoculated on bean leaves that presented diminishing anthracnose symptoms, which suggests the important role of AbcCl1 as a virulence factor and in fungal resistance to host compounds. The expression of abcCl1 increased in response to different toxic compounds, such as eugenol, hygromycin, and pisatin phytoalexin. Together, these results suggest that AbcCl1 is involved in fungal resistance to the toxic compounds produced by plants or antagonistic microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. Ragagnin VA, Alzate-Marin AL, Souza TLPO, Arruda KMA, Moreira MA, Barros EG (2003) Avaliação da resistência de isolinhas de feijoeiro a diferentes patótipos de Colletotrichum lindemuthianum, Uromyces appendiculatus e Phaeoisariopsis griseola. Fitopatol Bras 28(6):591–596. https://doi.org/10.1590/s0100-41582003000600002

    Article  Google Scholar 

  2. Alzate-Marin AL, De Souza KA, De Morais Silva MG, De Oliveira EJ, Moreira MA, De Barros EG (2007) Genetic characterization of anthracnose resistance genes Co-43 and Co-9 in common bean cultivar tlalnepantla 64 (PI 207262). Euphytica 154(1):1–8. https://doi.org/10.1007/s10681-006-9253-x

    Article  CAS  Google Scholar 

  3. Sicard D, Michalakis Y, Dron M, Neema C (1997) Genetic diversity and pathogenic variation of Colletotrichum lindemuthianum in the three centers of diversity of its host. Phaseolus vulgaris Phytopathology 87(8):807–813. https://doi.org/10.1094/PHYTO.1997.87.8.807

    Article  CAS  PubMed  Google Scholar 

  4. Rodríguez-Guerra R, Ramírez-Rueda MT, De La Vega OM, Simpson J (2003) Variation in genotype, pathotype and anastomosis groups of Colletotrichum lindemuthianum isolates from Mexico. Plant Pathol 52(2):228–235. https://doi.org/10.1046/j.1365-3059.2003.00808.x

    Article  Google Scholar 

  5. De Waard MA, Andrade AC, Hayashi K, Schoonbeek HJ, Stergiopoulos I, Zwiers LH (2006) Impact of fungal drug transporters on fungicide sensitivity, multidrug resistance and virulence. Pest Manag Sci 62(3):195–207. https://doi.org/10.1002/ps.1150

    Article  CAS  PubMed  Google Scholar 

  6. Gulshan K, Moye-Rowley WS. (2007) Multidrug resistance in fungi. Eukaryot Cell 6(11):1933–1942. 10.1128/EC.00254-07

  7. Paul S, Moye-Rowley WS (2014) Multidrug resistance in fungi: regulation of transporter-encoding gene expression. Front Physiol 5(APR April):1–14. https://doi.org/10.3389/fphys.2014.00143

  8. Song TT, Zhao J, Ying SH, Feng MG (2013) Differential contributions of five ABC transporters to mutidrug resistance, antioxidion and virulence of Beauveria bassiana, an entomopathogenic fungus. PLoS ONE 8(4):1–7. https://doi.org/10.1371/journal.pone.0062179

    Article  CAS  Google Scholar 

  9. Kim Y, Park SY, Kim D et al (2013) Genome-scale analysis of ABC transporter genes and characterization of the ABCC type transporter genes in Magnaporthe oryzae. Genomics 101(6):354–361. https://doi.org/10.1016/j.ygeno.2013.04.003

    Article  CAS  PubMed  Google Scholar 

  10. Zhou Z, Wu J, Wang M, Zhang J (2017) ABC protein CgABCF2 is required for asexual and sexual development, appressorial formation and plant infection in Colletotrichum gloeosporioides. Microb Pathog 110:85–92. https://doi.org/10.1016/j.micpath.2017.06.028

    Article  CAS  PubMed  Google Scholar 

  11. Del Sorbo G, Schoonbeek HJ, De Waard MA (2000) Fungal transporters involved in efflux of natural toxic compounds and fungicides. Fungal Genet Biol 30(1):1–15. https://doi.org/10.1006/fgbi.2000.1206

    Article  PubMed  Google Scholar 

  12. Theodoulou FL (2000) Plant ABC transporters. Biochim Biophys Acta - Biomembr 1465(1–2):79–103. https://doi.org/10.1016/S0005-2736(00)00132-2

    Article  CAS  Google Scholar 

  13. Klein C, Kuchler K, Valachovic M (2011) ABC proteins in yeast and fungal pathogens. Essays Biochem 50(1):101–119. https://doi.org/10.1042/BSE0500101

    Article  CAS  PubMed  Google Scholar 

  14. Gottesman MM, Pastan I (1993) Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem 62:385–427

    Article  CAS  Google Scholar 

  15. Higgins CF, Gottesman MM (1992) Is the multidrug transporter a flippase? Trends Biochem Sci 17(1):18–21. https://doi.org/10.1016/0968-0004(92)90419-A

    Article  CAS  PubMed  Google Scholar 

  16. Fleißner A, Sopalla C, Weltring KM (2002) An ATP-binding cassette multidrug-resistance transporter is necessary for tolerance of Gibberella pulicaris to phytoalexins and virulence on potato tubers. Mol Plant-Microbe Interact 15(2):102–108. https://doi.org/10.1094/mpmi.2002.15.2.102

    Article  PubMed  Google Scholar 

  17. Zwiers LH, Stergiopoulos I, Gielkens MMC, Goodall SD, De Waard MA (2003) ABC transporters of the wheat pathogen Mycosphaerella graminicola function as protectants against biotic and xenobiotic toxic compounds. Mol Genet Genomics 269(4):499–507. https://doi.org/10.1007/s00438-003-0855-x

    Article  CAS  PubMed  Google Scholar 

  18. Stergiopoulos I, Zwiers LH, De Waard MA (2003) The ABC transporter MgAtr4 is a virulence factor of Mycosphaerella graminicola that affects colonization of substomatal cavities in wheat leaves. Mol Plant-Microbe Interact 16(8):689–698. https://doi.org/10.1094/MPMI.2003.16.8.689

    Article  CAS  PubMed  Google Scholar 

  19. Schnabel G, Dai Q, Paradkar MR (2003) Cloning and expression analysis of the ATP-binding cassette transporter gene MFABC1 and the alternative oxidase gene MfAOX1 from Monilinia fructicola. Pest Manag Sci 59(10):1143–1151. https://doi.org/10.1002/ps.744

    Article  CAS  PubMed  Google Scholar 

  20. Gupta A, Chattoo BB (2008) Functional analysis of a novel ABC transporter ABC4 from Magnaporthe grisea. FEMS Microbiol Lett 278(1):22–28. https://doi.org/10.1111/j.1574-6968.2007.00937.x

    Article  CAS  PubMed  Google Scholar 

  21. Del Sorbo G, Ruocco M, Schoonbeek HJ et al (2008) Cloning and functional characterization of BcatrA, a gene encoding an ABC transporter of the plant pathogenic fungus Botryotinia fuckeliana (Botrytis cinerea). Mycol Res 112(6):737–746

    Article  Google Scholar 

  22. Hu W, Yan L, Ma Z (2008) Cloning and expression analysis of a putative ABC transporter gene BgABC1 from the biotrophic pathogenic Blumeria graminis f. sp. tritici. J Phytopathol 156(2):120–124. https://doi.org/10.1111/j.1439-0434.2007.01332.x

    Article  CAS  Google Scholar 

  23. (2013) Identification of ABC transporter genes of Fusarium graminearum with roles in azole tolerance and/or virulence. PLoS One 8(11):1–13. https://doi.org/10.1371/journal.pone.0079042

  24. Jeong CB, Kim DH, Kang HM et al (2017) Genome-wide identification of ATP-binding cassette (ABC) transporters and their roles in response to polycyclic aromatic hydrocarbons (PAHs) in the copepod Paracyclopina nana. Aquat Toxicol 183:144–155. https://doi.org/10.1016/j.aquatox.2016.12.022

    Article  CAS  PubMed  Google Scholar 

  25. Damasceno E, Silva KJ, De Souza EA, Ishikawa FH (2007) Characterization of Colletotrichum lindemuthianum isolates from the state of Minas Gerais. Brazil J Phytopathol 155(4):241–247. https://doi.org/10.1111/j.1439-0434.2007.01226.x

    Article  Google Scholar 

  26. Punt PJ, Oliver RP, Dingemanse MA, Pouwels PH, Van Den Hondel CAMJJ (1987) Transformation of Aspergillus based on the hygromycin B resistance marker from Escherichia coli. Gene 56(1):117–124. https://doi.org/10.1016/0378-1119(87)90164-8

    Article  CAS  PubMed  Google Scholar 

  27. Soares MA, Nogueira GB, Bazzolli DMS, de Araújo EF, Langin T, de Queiroz MV (2014) PacCl, a pH-responsive transcriptional regulator, is essential in the pathogenicity of Colletotrichum lindemuthianum, a causal agent of anthracnose in bean plants. Eur J Plant Pathol 140(4):769–785. https://doi.org/10.1007/s10658-014-0508-4

    Article  CAS  Google Scholar 

  28. Benton W, Davis R (1977) Screening lambdagt recombinant clones by hybridization to single plaques in situ. Science (80- ) 196(4286):180–182. https://doi.org/10.1126/science.322279

    Article  CAS  Google Scholar 

  29. Sambrook J, Fritsch FE, Maniatis T (1989) Molecular Cloning: A Laboratory Manual. Second. Cold Spring Harbor

  30. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386. https://doi.org/10.1385/1-59259-192-2:365

    Article  CAS  PubMed  Google Scholar 

  31. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  32. Deber CM (2001) TM Finder: a prediction program for transmembrane protein segments using a combination of hydrophobicity and nonpolar phase helicity scales. Protein Sci 10(1):212–219. https://doi.org/10.1110/ps.30301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Larkin MA, Blackshields G, Brown NP et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948. https://doi.org/10.1093/bioinformatics/btm404

    Article  CAS  PubMed  Google Scholar 

  34. de Queiroz CB, Correia HLN, Menicucci RP, Vidigal PMP, de Queiroz MV (2017) Draft genome sequences of two isolates of Colletotrichum lindemuthianum, the causal agent of anthracnose in common beans. Genome Announc 5(18):17–18. https://doi.org/10.1128/genomeA.00214-17

    Article  Google Scholar 

  35. Kearse M, Moir R, Wilson A et al (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12):1647–1649. https://doi.org/10.1093/bioinformatics/bts199

    Article  PubMed  PubMed Central  Google Scholar 

  36. Catlett NL, Lee B-N, Yoder OC, Turgeon BG (2003) Split-marker recombination for efficient targeted deletion of fungal genes. Fungal Genet Rep 50(1):9–11. https://doi.org/10.4148/1941-4765.1150

    Article  Google Scholar 

  37. Teixeira JA, Gonçalves DB, de Queiroz MV, De Araújo EF (2011) Improved pectinase production in Penicillium griseoroseum recombinant strains. J Appl Microbiol 111(4):818–825. https://doi.org/10.1111/j.1365-2672.2011.05099.x

    Article  CAS  PubMed  Google Scholar 

  38. Parisot D, Dufresne M, Veneault C, Laugé R, Langin T (2002) clap1, a gene encoding a copper-transporting ATPase involved in the process of infection by the phytopathogenic fungus Colletotrichum lindemuthianum. Mol Genet Genomics 268(2):139–151. https://doi.org/10.1007/s00438-002-0744-8

    Article  CAS  PubMed  Google Scholar 

  39. Semighini CP, Marins M, Goldman MHS, Goldman GH (2002) Quantitative analysis of the relative transcript levels of ABC transporter Atr genes in Aspergillus nidulans by real-time reverse transcription-PCR assay. Appl Environ Microbiol 68(3):1351–1357. https://doi.org/10.1128/AEM.68.3.1351-1357.2002

    Article  CAS  PubMed  Google Scholar 

  40. Kinghorn JR, Turner G (1992) Applied molecular genetics of filamentous fungi. Springer, Netherlands

  41. Tilburn J, Sarkar S, Widdick DA et al (1995) The Aspergillus PacC zinc finger transcription factor mediates regulation of both acid- and alkaline-expressed genes by ambient pH. EMBO J 14(4):779–790. https://doi.org/10.1002/j.1460-2075.1995.tb07056.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schmees G, Stein A, Hunke S, Landmesser H, Schneider E (1999) Functional consequences of mutations in the conserved “signature sequence” of the ATP-binding-cassette protein MalK. Eur J Biochem 266(2):420–430. https://doi.org/10.1046/j.1432-1327.1999.00871.x

    Article  CAS  PubMed  Google Scholar 

  43. Walker JE, Saraste M, Runswick MJ, Gay NJ (1982) Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1(8):945–951. https://doi.org/10.1002/j.1460-2075.1982.tb01276.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lamping E, Baret P V, Holmes AR, Monk BC, Goffeau A, Cannon RD (2011). function.47(2):1–36. https://doi.org/10.1016/j.fgb.2009.10.007.Fungal

  45. Kovalchuk A, Driessen AJM (2010) Phylogenetic analysis of fungal ABC transporters. BMC Genomics 11:177. https://doi.org/10.1186/1471-2164-11-177

  46. Belofsky G, Kolaczkowski M, Adams E et al (2013) Fungal ABC transporter-associated activity of isoflavonoids from the root extract of Dalea formosa. J Nat Prod 76(5):915–925. https://doi.org/10.1021/np4000763

    Article  CAS  PubMed  Google Scholar 

  47. Espeso EA, Tilburn J, Sánchez-Pulido L et al (1997) Specific DNA recognition by the Aspergillus nidulans three zinc finger transcription factor PacC. J Mol Biol 274(4):466–480. https://doi.org/10.1006/jmbi.1997.1428

    Article  CAS  PubMed  Google Scholar 

  48. Alkan N, Meng X, Friedlander G et al (2013) Global aspects of pacC regulation of pathogenicity genes in Colletotrichum gloeosporioides as revealed by transcriptome analysis. Mol Plant-Microbe Interact 26(11):1345–1358. https://doi.org/10.1094/MPMI-03-13-0080-R

    Article  CAS  PubMed  Google Scholar 

  49. Voigt CA, Schäfer W, Salomon S (2005) A secreted lipase of Fusarium graminearum is a virulence factor required for infection of cereals. Plant J 42(3):364–375. https://doi.org/10.1111/j.1365-313X.2005.02377.x

    Article  CAS  PubMed  Google Scholar 

  50. Morrissey JP, Osbourn AE (1999) Fungal resistance to plant antibiotics as a mechanism of pathogenesis. Microbiol Mol Biol Rev 63(3):708–724. https://doi.org/10.1128/mmbr.63.3.708-724.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. VanEtten H, Temporini E, Wasmann C (2001) Phytoalexin (and phytoanticipin) tolerance as a virulence trait: why is it not required by all pathogens? Physiol Mol Plant Pathol 59(2):83–93. https://doi.org/10.1006/pmpp.2001.0350

    Article  CAS  Google Scholar 

  52. Duffy B, Schouten A, Raaijmakers JM (2003) Pathogen self-defense: mechanisms to counteract microbial antagonism. Annu Rev Phytopathol 41:501–538. https://doi.org/10.1146/annurev.phyto.41.052002.095606

    Article  CAS  PubMed  Google Scholar 

  53. George HL, VanEtten HD (2001) Characterization of pisatin-inducible cytochrome p450s in fungal pathogens of pea that detoxify the pea phytoalexin pisatin. Fungal Genet Biol 33(1):37–48. https://doi.org/10.1006/fgbi.2001.1270

    Article  CAS  PubMed  Google Scholar 

  54. Maranhão FCA, Paião FG, Fachin AL, Martinez-Rossi NM (2009) Membrane transporter proteins are involved in Trichophyton rubrum pathogenesis. J Med Microbiol 58(2):163–168. https://doi.org/10.1099/jmm.0.002907-0

    Article  CAS  PubMed  Google Scholar 

  55. Hayashi K, Schoonbeek Hjan, De Waard MA (2003) Modulators of membrane drug transporters potentiate the activity of the DMI fungicide oxpoconazole against Botrytis cinerea. Pest Manag Sci 59(3):294–302. https://doi.org/10.1002/ps.637

    Article  CAS  PubMed  Google Scholar 

  56. Reimann S, Deising HB (2005) Inhibition of efflux transporter-mediated fungicide resistance in Pyrenophora tritici-repentis by a derivative of 4′-hydroxyflavone and enhancement of fungicide activity. Appl Environ Microbiol 71(6):3269–3275. https://doi.org/10.1128/AEM.71.6.3269-3275.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Roohparvar R, Huser A, Zwiers LH, De Waard MA (2007) Control of Mycosphaerella graminicola on wheat seedlings by medical drugs known to modulate the activity of ATP-binding cassette transporters. Appl Environ Microbiol 73(15):5011–5019. https://doi.org/10.1128/AEM.00285-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Specht CA, DiRusso CC, Novotny CP, Ullrich RC (1982) A method for extracting high-molecular-weight deoxyribonucleic acid from fungi. Anal Biochem 119(1):158–163. https://doi.org/10.1016/0003-2697(82)90680-7

    Article  CAS  PubMed  Google Scholar 

  59. Urban M, Bhargava T, Hamer JE (1999) An ATP-driven efflux pump is a novel pathogenicity factor in rice blast disease. EMBO J 18(3):512–521. https://doi.org/10.1093/emboj/18.3.512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Siewers V, Viaud M, Jimenez-Teja D et al (2005) Functional analysis of the cytochrome P450 monooxygenase gene bcbot1 of Botrytis cinerea indicates that botrydial is a strain-specific virulence factor. Mol Plant-Microbe Interact 18(6):602–612. https://doi.org/10.1094/MPMI-18-0602

    Article  CAS  PubMed  Google Scholar 

  61. Takaoka S, Kurata M, Harimoto Y et al (2014) Complex regulation of secondary metabolism controlling pathogenicity in the phytopathogenic fungus Alternaria alternata. New Phytol 202(4):1297–1309. https://doi.org/10.1111/nph.12754

    Article  CAS  PubMed  Google Scholar 

  62. Skov J, Lemmens M, Giese H (2004) Role of a Fusarium culmorum ABC transporter (FcABC1) during infection of wheat and barley. Physiol Mol Plant Pathol 64(5):245–254. https://doi.org/10.1016/j.pmpp.2004.09.005

    Article  CAS  Google Scholar 

  63. Veneault-Fourrey C, Parisot D, Gourgues M, Laugé R, Lebrun MH, Langin T (2005) The tetraspanin gene ClPLS1 is essential for appressorium-mediated penetration of the fungal pathogen Colletotrichum lindemuthianum. Fungal Genet Biol 42(4):306–318. https://doi.org/10.1016/j.fgb.2005.01.009

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the following Brazilian institutions for financial support: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES)—Finance Code 001, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG).

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Maycon Campos Oliveira and Gláucia Queiroz dos Santos: experimental development, manuscript writing; Janaina Aparecida Teixeira, Hilberty Lucas Nunes Correia, and Leandro Lopes da Silva: manuscript writing; Elza Fernandes de Araújo and Marisa Vieira de Queiroz: experimental design, manuscript writing.

Corresponding author

Correspondence to Marisa Vieira de Queiroz.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

All authors contributed to the study conception and design. All authors read and approved the final manuscript.

Consent for publication

All authors gave consent to submit for publication.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Melissa Fontes Landell

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3.90 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, M.C., dos Santos, G.Q., Teixeira, J.A. et al. The AbcCl1 transporter of Colletotrichum lindemuthianum acts as a virulence factor involved in fungal detoxification during common bean (Phaseolus vulgaris) infection. Braz J Microbiol 53, 1121–1132 (2022). https://doi.org/10.1007/s42770-022-00787-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-022-00787-1

Keywords

Navigation