Skip to main content
Log in

ABC transporters of the wheat pathogen Mycosphaerella graminicola function as protectants against biotic and xenobiotic toxic compounds

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

We have studied the role of five ABC transporter genes ( MgAtr to MgAtr5) from the wheat pathogen Mycosphaerella graminicola in multidrug resistance (MDR). Complementation of Saccharomyces cerevisiae mutants with the ABC transporter genes from M. graminicola showed that all the genes tested encode proteins that provide protection against chemically unrelated compounds, indicating that their products function as multidrug transporters with distinct but overlapping substrate specificities. Their substrate range in yeast includes fungicides, plant metabolites, antibiotics, and a mycotoxin derived from Fusarium graminearum (diacetoxyscirpenol). Transformants of M. graminicola in which individual ABC transporter genes were deleted or disrupted did not exhibit clear-cut phenotypes, probably due to the functional redundancy of transporters with overlapping substrate specificity. Independently generated MgAtr5 deletion mutants of M. graminicola showed an increase in sensitivity to the putative wheat defence compound resorcinol and to the grape phytoalexin resveratrol, suggesting a role for this transporter in protecting the fungus against plant defence compounds. Bioassays with antagonistic bacteria indicated that MgAtr2 provides protection against metabolites produced by Pseudomonas fluorescens and Burkholderia cepacia. In summary, our results show that ABC transporters from M. graminicola play a role in protection against toxic compounds of natural and artificial origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5A–C.

Similar content being viewed by others

References

  • Andrade AC, Del Sorbo G, van Nistelrooy JGM, De Waard MA (2000) The ABC transporter AtrB from Aspergillus nidulans mediates resistance to all major classes of fungicides and some natural toxic compounds. Microbiology 146:1987–1997

    CAS  PubMed  Google Scholar 

  • Burkhead K, Schisler D, Slininger P (1994) Pyrrolnitrin production by biological control agent Pseudomonas cepacia B37w in culture and in colonized wounds of potatoes. Appl Environ Microbiol 60:2031–2039

    CAS  Google Scholar 

  • Carmi R, Carmeli S, Levy E, Gough FJ (1994) (+)-(S)-dihydroaeruginoic acid, an inhibitor of Septoria tritici and other phytopathogenic fungi and bacteria, produced by Pseudomonas fluorescens. J Nat Prod 57:1200–5

    CAS  PubMed  Google Scholar 

  • Christensen PU, Davey J, Nielsen O (1997) The Schizosaccharomyces pombe mam1 gene encodes an ABC transporter mediating secretion of M-factor. Mol Gen Genet 255:226–236

    Article  CAS  PubMed  Google Scholar 

  • De Waard MA (1997) Significance of ABC transporters in fungicide sensitivity and resistance. Pestic Sci 51:271–275

    Article  Google Scholar 

  • Decottignies A, Goffeau A (1997) Complete inventory of the yeast ABC proteins. Nat Genet 15:137–145

    CAS  PubMed  Google Scholar 

  • Decottignies A, Grant AM, Nichols JW, De Wet H, McIntosh DB, Goffeau A (1998) ATPase and multidrug transport activities of the overexpressed yeast ABC protein Yor1p. J Biol Chem 273:12612–12622

    CAS  PubMed  Google Scholar 

  • Del Sorbo G, Schoonbeek H, De Waard MA (2000) Fungal transporters involved in efflux of natural toxic compounds and fungicides. Fungal Genet Biol 30:1–15

    PubMed  Google Scholar 

  • Fleissner A, Copalla C, Weltring K-M (2002) An ABC Multidrug-Resistance transporter is necessary for tolerance of Gibberella pulicaris to phytoalexins and virulence on potato tubers. Mol Plant-Microbe Interact 15:102–108

    Google Scholar 

  • Foote SJ, Thompson JK, Cowman AF, Kemp DJ (1989) Amplification of the multidrug resistance gene in some chloroquine-resistant isolates of P. falciparum. Cell 57:921–930

    CAS  PubMed  Google Scholar 

  • Frey M, Chomet P, Glawischnig E, Stettner C, Grun S, Winklmair A, Eisenreich W, Bacher A, Meeley RB, Briggs SP, Simcox K, Gierl A (1997) Analysis of a chemical plant defense mechanism in grasses. Science 277:696–699

    CAS  PubMed  Google Scholar 

  • Gottesman MM, Pastan I (1993) Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem 62:385–427

    CAS  PubMed  Google Scholar 

  • Higgins CF (2001) ABC transporters: physiology, structure and mechanism—an overview. Res Microbiol 152:205–210

    Article  CAS  PubMed  Google Scholar 

  • Howell CR, Stipanovic RD (1979) Control of Rhizoctonia solani on cotton seedlings with Pseudomonas fluorescens and with an antibiotic produced by the bacterium. Phytopathology 69:480–482

    CAS  Google Scholar 

  • Jeandet P, Bessis R, Sbaghi M, Meunier P (1995) Production of the phytoalexin resveratrol by grapes as a response to Botrytis attack under natural conditions. J Phytopathol 143:135–139

    CAS  Google Scholar 

  • Kaur R, Bachhawat AK (1999) The yeast multidrug resistance pump, Pdr5p, confers reduced drug resistance in erg mutants of Saccharomyces cerevisiae. Microbiology 145:809–818

    CAS  PubMed  Google Scholar 

  • Kema GHJ, Van Silfhout CH (1997) Genetic variation for virulence and resistance in the wheat- Mycosphaerella graminicola pathosystem. III. Comparative seedling and adult plant experiments. Phytopathology 87:266–272

    Google Scholar 

  • King EO, Ward MK, Raney DE (1954) Two simple media for the demonstration of pyocyanin and fluorescein. J Lab Clin Med 44:301–307

    Google Scholar 

  • Kolaczkowski M, Goffeau A (1997) Active efflux by multidrug transporters as one of the strategies to evade chemotherapy and novel practical implications of yeast pleiotropic drug resistance. Pharmacol Therapeut 76:219–242

    Article  CAS  Google Scholar 

  • Kolaczkowski M, Kolaczkowska A, Luczynski J, Witek S, Goffeau A (1998) In vivo characterization of the drug resistance profile of the major ABC transporters and other components of the yeast pleiotropic drug resistance network. Microb Drug Resist 4:143–158

    CAS  PubMed  Google Scholar 

  • Krishnamurthy SS, Prasad RU (1999) Membrane fluidity affects functions of Cdr1p, a multidrug ABC transporter of Candida albicans. FEMS Microbiol Lett 173:475–481

    Article  CAS  PubMed  Google Scholar 

  • Levy E, Eyal Z, Carmely S, Kashman Y, Chet I (1989) Suppression of Septoria tritici and Puccinia recondita of wheat by an antibiotic-producing fluorescent pseudomonad. Plant Pathol 38:564–570

    Google Scholar 

  • Mahe Y, Lemoine Y, Kuchler K (1996) The ATP binding cassette transporters Pdr5 and Snq2 of Saccharomyces cerevisiae can mediate transport of steroids in vivo. J Biol Chem 271:25167–25172

    Google Scholar 

  • McGrath JP, Varshavsky A (1989) The yeast STE6 gene encodes a homologue of the mammalian multidrug resistance P-glycoprotein. Nature 340:400–404

    CAS  PubMed  Google Scholar 

  • Melchers WJ, Verweij PE, Van den Hurk P, Van Belkum A, De Pauw BE, Hoogkamp Korstanje JA, Meis JF (1994) General primer-mediated PCR for detection of Aspergillus species. J Clin Microbiol 32:1710–1717

    CAS  PubMed  Google Scholar 

  • Muhitch MJ, McCormick SP, Alexander NJ, Hohn TM (2000) Transgenic expression of the TRI101 or PDR5 gene increases resistance of tobacco to the phytotoxic effects of the trichothecene 4,15-diacetoxyscirpenol. Plant Sci 157:201–207

    CAS  PubMed  Google Scholar 

  • Nishi K, Yoshida M, Nishimura M, Nishikawa M, Nishiyama M, Horinouchi S, Beppu T (1992) A leptomycin B resistance gene of Schizosaccharomyces pombe encodes a protein similar to the mammalian P-glycoproteins. Mol Microbiol 6:761–769

    CAS  PubMed  Google Scholar 

  • Payne AC, Grosjean-Cournoyer MC, Hollomon DW (1998) Transformation of the phytopathogen Mycosphaerella graminicola to carbendazim and hygromycin B resistance. Curr Genet 34:100–104

    Article  CAS  PubMed  Google Scholar 

  • Rothenberg ML (1997) Topoisomerase I inhibitors: review and update. Ann Oncol 8:837–855

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual (2nd edn). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Schoonbeek H, Del Sorbo G, De Waard MA (2001) The ABC transporter BcatrB affects the sensitivity of Botrytis cinerea to the phytoalexin resveratrol and the fungicide fenpiclonil. Mol Plant-Microbe Interact 14:562–571

    Google Scholar 

  • Schoonbeek H, Raaijmakers JM, De Waard MA (2002) Fungal ABC transporters and microbial interactions in natural environments. Mol Plant-Microbe Interact 15:1165–1172

    Google Scholar 

  • Seitz LM (1992) Identification of 5-(2-oxoalkyl)resorcinols and 5-(2-oxoalkenyl)resorcinols in wheat and rye grains. J Agr Food Chem 40:1541–1546

    CAS  Google Scholar 

  • Stergiopoulos I, Gielkens MMC, Goodall SD, Venema K, De Waard MA (2002a) Molecular cloning and characterisation of three new ABC transporter-encoding genes from the wheat pathogen Mycosphaerella graminicola. Gene 289:141–149

    Article  CAS  PubMed  Google Scholar 

  • Stergiopoulos I, Zwiers L-H, De Waard MA (2002b) Secretion of natural and synthetic toxic compounds from filamentous fungi by membrane transporters of the ATP-binding cassette and major facilitator superfamily. Eur J Plant Pathol 108:719–734

    Article  CAS  Google Scholar 

  • Stergiopoulos I, Zwiers L-H, De Waard MA (2003) The ABC transporter MgAtr4 is a virulence factor of Mycosphaerella graminicola that affects colonization of substomatal cavities in wheat leaves. Mol Plant-Microbe Interact (in press)

  • Stermitz FR, Lorenz P, Tawara JN, Zenewicz LA, Lewis K (2000) Synergy in a medicinal plant: antimicrobial action of berberine potentiated by 5´-methoxyhydnocarpin, a multidrug pump inhibitor. Proc Natl Acad Sci USA 97:1433–1437

    Article  CAS  PubMed  Google Scholar 

  • Suzuki Y, Esumi Y, Hyakutake H, Kono Y, Sakurai A (1996) Isolation of 5-(8'Z-heptadecenyl)-resorcinol from etiolated rice seedlings as an antifungal agent. Phytochemistry 41:1485–1489

    Article  CAS  Google Scholar 

  • Urban M, Bhargava T, Hamer JE (1999) An ATP-driven efflux pump is a novel pathogenicity factor in rice blast disease. EMBO J 18:512–521

    CAS  PubMed  Google Scholar 

  • Wilkes MA, Marshall DR, Copeland L (1999) Hydroxamic acids in cereal roots inhibit the growth of take-all. Soil Biol Biochem 31:1831–1836

    Article  CAS  Google Scholar 

  • Zwiers L-H, De Waard MA (2000) Characterization of the ABC transporter genes MgAtr1 and MgAtr2 from the wheat pathogen Mycosphaerella graminicola. Fungal Genet Biol 30:115–125

    CAS  PubMed  Google Scholar 

  • Zwiers L-H, De Waard MA (2001) Efficient Agrobacterium tumefaciens -mediated gene disruption in the phytopathogen Mycosphaerella graminicola. Curr Genet 39:388–393

    CAS  PubMed  Google Scholar 

  • Zwiers L-H, Stergiopoulos I, Van Nistelrooy JGM, De Waard MA (2002) ABC transporters and azole susceptibility in laboratory strains of the wheat pathogen Mycosphaerella graminicola. Antimicrob Agents Chemother 46:3900–3906

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Dr. G.H.J. Kema and Dr. C. Waalwijk are acknowledged for discussions within the Wageningen Mycosphaerella group. We thank Prof. Dr. P.J.G. De Wit for critically reading the manuscript, Dr. T. Hohn (Syngenta) for the generous gift of diacetoxyscirpenol, Dr. J. Raaymakers for providing P. fluorescens Pf5 and B. cepacia B37W, and H. Schoonbeek for help and discussions on the bacterial bioassay. L-H. Zwiers was financially supported by Syngenta, Switzerland, I. Stergiopoulos by the Training and Mobility of Researchers (TMR) Programme (Marie Curie Research Grants) of the European Commission (Contract No. ERBFMBICT983558), and M.M.C. Gielkens and S.D. Goodall by the EU-BIOTECH 2 programme (Reference No. BIO4CT960352)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. De Waard.

Additional information

Communicated by C. A. M. J. J. van den Hondel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zwiers, LH., Stergiopoulos, I., Gielkens, M.M.C. et al. ABC transporters of the wheat pathogen Mycosphaerella graminicola function as protectants against biotic and xenobiotic toxic compounds. Mol Gen Genomics 269, 499–507 (2003). https://doi.org/10.1007/s00438-003-0855-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-003-0855-x

Keywords

Navigation