Skip to main content
Log in

Antibacterial activity of biosynthesized silver nanoparticles (AgNps) against Pectobacterium carotovorum

  • Biotechnology and Industrial Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

In a bioprospecting study of paramo soils cultivated with potato (Solanum tuberosum), 50 fungal isolates were obtained and evaluated for their nitrate reductase (NR) activity, given the role played by this enzyme in the biosynthesis of silver nanoparticles (AgNps). Five isolates strain with high NR activity belonging to Penicillium simplicissimum, Aspergillus niger, and Fusarium oxysporum species were selected, verifying the presence of the NR enzyme in their enzymatic extract. Later, these strains showed the ability to biosynthesize AgNps with distorted spherical shapes and sizes ranging from 15 to 45 nm. Subsequently, an antibiosis test was carried out by the agar diffusion method using glass fiber disks against the phytopathogenic agent Pectobacterium carotovorum, finding halos of inhibition of bacterial growth up to 15.3 mm using a 100 ppm solution of the AgNps obtained from F. oxysporum. These results contribute to generating the basis of a new alternative for the control of this phytopathogenic agent of potato, challenging to manage by traditional methods and of relevance at the post-harvest level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. FAO statistics (2019) FAO statistics 2019. Food and agriculture organization. http://www.fao.org/statistics/es/. Accessed 21 december 2019

  2. Lurwanu Y, Wang Y, Jiao WuE, Dun-Chun H, Waheed A, Nkurikiyimfura O, Wang Z, Shang L, Na Yang L, Zhan J (2021) Increasing temperature elevates the variation and spatial differentiation of pesticide tolerance in a plant pathogen. Evol Appl 14:1274–1285. https://doi.org/10.1111/eva.13197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yi L, Liu X, Qi T, Deng L, Zeng K (2021) A new way to reduce postharvest loss of vegetables: antibacterial products of vegetable fermentation and its controlling soft rot caused by Pectobacterium carotovorum. Biol Control 161:104708. https://doi.org/10.1016/j.biocontrol.2021.104708

    Article  CAS  Google Scholar 

  4. Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P, Dow M, Verdier V, Beer SV, Machado M, Toth I, Salmond G, Foster G (2012) Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol 13:614–629. https://doi.org/10.1111/j.1364-3703.2012.00804

    Article  PubMed  PubMed Central  Google Scholar 

  5. Czajkowski R, Perombelon M, van Veen J, Van der Wolf J (2011) Control of blackleg and tuber soft rot of potato caused by Pectobacterium and Dickeya species: a review. Plant Pathol 60:999–1013. https://doi.org/10.1111/j.1365-3059.2011.02470.x

    Article  Google Scholar 

  6. Elizabath A, Babychan M (2019) Applications of nanotechnology in agriculture. Int J Pure Appl Biosci 7(2):131–9. https://doi.org/10.18782/2320-7051.6493

    Article  Google Scholar 

  7. Mishra S, Singh H (2015) Biosynthesized silver nanoparticles as a nanoweapon against phytopathogens: exploring their scope and potential in agriculture. Appl Microbiol Biotechnol 99:1097–1107. https://doi.org/10.1007/s00253-014-6296-0

    Article  CAS  PubMed  Google Scholar 

  8. Alghuthaymi M, Almoammar H, Rai M, Said-Galiev E, Abd-Elsalam K (2015) Myconanoparticles: synthesis and their role in phytopathogens management. Biotechnol Biotechnol Equip 29(2):221–226. https://doi.org/10.1080/13102818.2015.1008194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Abbasi E, Milani M, Aval S, Kouhi M, Akbarzadeh A, Nasrabadi H, Nikasa P, Joo A, Hanifehpour Y, Nejati-Koshki K, Samiei M (2016) Silver nanoparticles: synthesis methods, bio-applications and properties. Crit Rev Microbiol 42(2):173–180. https://doi.org/10.3109/1040841X.2014.912200

    Article  CAS  PubMed  Google Scholar 

  10. Dhillon G, Brar S, Kaur S, Verma M (2012) Green approach for nanoparticle biosynthesis by fungi: current trends and applications. Crit Rev Biotechnol 32(1):49–73. https://doi.org/10.3109/07388551.2010.550568

    Article  CAS  PubMed  Google Scholar 

  11. Singh D, Rathod V, Ninganagouda S, Hiremath J, Singh A, Mathew J (2014) Optimization and characterization of silver nanoparticle by endophytic fungi Penicillium sp. isolated from Curcuma longa (Turmeric) and application studies against MDR E. coli and S. aureus. Bioinorg Chem Appl 2014:408021. https://doi.org/10.1155/2014/408021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Keat C, Aziz A, Eid A, Elmarzugi N (2015) Biosynthesis of nanoparticles and silver nanoparticles. Bioresour Bioprocess 2(1). https://doi.org/10.1186/s40643-015-0076-2

  13. Ramos M, dos S. Morais E, da S. Sena I, Lima A, de Oliveira F, de Freitas C et al (2020) Silver nanoparticle from whole cells of the fungi Trichoderma spp. isolated from Brazilian amazon. Biotechnol Lett 42(5):833–43. https://doi.org/10.1007/s10529-020-02819-y

    Article  CAS  PubMed  Google Scholar 

  14. De Souza A (2015) Biosynthesis of silver nanoparticles by fungi. In: Vijai Kumar Gupta S, Sreenivasaprasad RLM, editor. Fungal Biomolecules. UK, 2015, 117–35

  15. Ma L, Su W, Liu J-X, Zeng X-X, Huang Z, Li W et al (2017) Optimization for extracellular biosynthesis of silver nanoparticles by Penicillium aculeatum Su1 and their antimicrobial activity and cytotoxic effect compared with silver ions. Mater Sci Eng C 77:963–971. https://doi.org/10.1016/j.msec.2017.03.294

    Article  CAS  Google Scholar 

  16. Kotval S, John T, Kokila A (2016) A Review: Fabrication of biogenic silver nanoparticles and applications. J Chem Biol Phys Sci 6(3):997–1009

    CAS  Google Scholar 

  17. Nayak B, Nanda A, Prabhakar V (2018) Biogenic synthesis of silver nanoparticle from wasp nest soil fungus, Penicillium italicum and its analysis against multi drug resistance pathogens. Biocatal Agric Biotechnol 16:412–418. https://doi.org/10.1016/j.bcab.2018.09.014

    Article  Google Scholar 

  18. Fatima F, Bajpai P, Pathak N, Singh S, Priya S, Verma S (2015) Antimicrobial and immunomodulatory efficacy of extracellularly synthesized silver and gold nanoparticles by a novel phosphate solubilizing fungus Bipolaris tetramera. BMC Microbiol 15(1):52. https://doi.org/10.1186/s12866-015-0391-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Siddiqi K, Husen A (2016) Fabrication of metal nanoparticles from fungi and metal salts: scope and application. Nanoscale Res Lett 11(1). https://doi.org/10.1186/s11671-016-1311-2

  20. Elgorban A, Al-Rahmah A, Sayed S, Hirad A, Mostafa A, Bahkali A (2016) Antimicrobial activity and green synthesis of silver nanoparticles using Trichoderma viride. Biotechnol Biotechnol Equip 30(2):299–304. https://doi.org/10.1080/13102818.2015.1133255

    Article  CAS  Google Scholar 

  21. Hamedi S, Ghaseminezhad M, Shokrollahzadeh S, Shojaosadati S (2017) Controlled biosynthesis of silver nanoparticles using nitrate reductase enzyme induction of filamentous fungus and their antibacterial evaluation. Artif Cells Nanomed Biotechnol 45(8):1588–1596. https://doi.org/10.1080/21691401.2016.1267011

    Article  CAS  PubMed  Google Scholar 

  22. Samson R, Hoekstra E, Frisvad J (2004) Introduction to food and airborne fungi. 7 th. Centraalbureau voor Schimmelcultures U, editor. 389 p

  23. Pitt J, Hocking, A (2009) Fungi and food spoilage. 3th edn. Springer US. https://doi.org/10.1007/978-0-387-92207-2

  24. Winn W, Janda W, Koneman E, Procop G, Schreckenbergew P, Woods G (2006) Koneman Diagnóstico microbiológico. Textos y Atlas en color. Editorial Panamericana

  25. Harley S (1993) Use of a simple, colorimetric assay to demonstrate conditions for induction of nitrate reductase in plants. Am Biol Teach 55(3):161–164. https://doi.org/10.2307/4449615

    Article  Google Scholar 

  26. Hu X, Webster G, Xie L, Yu C, Li Y, Liao X (2014) A new method for the preservation of axenic fungal cultures. J Microbiol Methods 99(1):81–83. https://doi.org/10.1016/j.mimet.2014.02.009

    Article  CAS  PubMed  Google Scholar 

  27. Sambrook J, Maccallum P, Russel D (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Springs Harbour Press, New York, p 2344

    Google Scholar 

  28. Ahluwalia V, Kumar J, Sisodia R, Shakil N, Walia S (2014) Green synthesis of silver nanoparticles by Trichoderma harzianum and their bio-efficacy evaluation against Staphylococcus aureus and Klebsiella pneumonia. Ind Crops Prod 55:202–206. https://doi.org/10.1016/j.indcrop.2014.01.026

    Article  CAS  Google Scholar 

  29. Al juraifani A (2015) Biosynthesis of silver nanoparticles by Aspergillus niger, Fusarium oxysporum and Alternaria solani. Afr J Biotechnol 14(26):2170–2174. https://doi.org/10.5897/AJB2015.14482

    Article  Google Scholar 

  30. Krishnakumar S, Sindu D, Shankar G, Williams P, Sasikumar M (2015) Extracellular biosynthesis of silver nanoparticles (Ag-NPs) using Fusarium oxysporium (MTCC-2480) and its antibacterial efficacy against Gram negative human pathogens. J Chem Pharm Res 7(1):62–67

    CAS  Google Scholar 

  31. AbdelRahim K, Mahmoud S, Ali A, Almaary K, Mustafa A, Husseiny S (2017) Extracellular biosynthesis of silver nanoparticles using Rhizopus stolonifer. Saudi J Biol Sci 24(1):208–216. https://doi.org/10.1016/j.sjbs.2016.02.025

    Article  CAS  PubMed  Google Scholar 

  32. Gonzalez E et al (2015) Nanopartículas Coloidales. Ed. Nanocitec, 1ra Ed. ISBN: 978–958–46–6931–5

  33. Lelliott R, Billinge A, Hayward C (1966) A determinative scheme for the fluorescent plant pathogenic Pseudomonads. J App Bact 29(3):470–489. https://doi.org/10.1111/j.1365-2672.1966.tb03499.x

    Article  CAS  Google Scholar 

  34. Gokul G, Louis V, Namitha P, Mathew D, Girija D, Shylaja M et al (2019) Variability of Pectobacterium carotovorum causing rhizome rot in banana. Biocatal Agric Biotechnol 17:60–81. https://doi.org/10.1016/j.bcab.2018.11.001

    Article  Google Scholar 

  35. Hamad M (2019) Biosynthesis of silver nanoparticles by fungi and their antibacterial activity. Int J Environ Sci Technol 16:1015–1024. https://doi.org/10.1007/s13762-018-1814-8

    Article  CAS  Google Scholar 

  36. Krishnakumar S, Sindu D, Shankar G, Williams P, Sasikumar M (2015) Extracellular biosynthesis of silver nanoparticles (Ag-NPs) using Fusarium oxysporum (MTCC-2480) and its antibacterial efficacy against Gram negative human pathogens. J Chem Pharm Res 7(1):62–67

    CAS  Google Scholar 

  37. Dhoble S (2015) Biosynthesis of metal nanoparticles from fungal isolates of soybean rhizosphere. Int J Sci Res 4(5):3–5

    Google Scholar 

  38. Madakka M, Jayaraju N, Rajesh N (2018) Mycosynthesis of silver nanoparticles and their characterization. Methods 5:20–29. https://doi.org/10.1016/j.mex.2017.12.003

    Article  CAS  Google Scholar 

  39. Sayer J, Raggett S, Gadd G (1995) Solubilization of insoluble metal compounds by soil fungi: development of a screening method for solubilizing ability and metal tolerance. Mycol Res 99(8):987–993

    Article  CAS  Google Scholar 

  40. Wakelin S, Warren R, Ryder HP, M, (2014) Phosphate solubilization by Penicillium spp. closely associated with wheat roots. Biol Fertil Soils 40:36–43. https://doi.org/10.1007/s00374-004-0750-6

    Article  CAS  Google Scholar 

  41. Achi O, Emeruwa A (1993) Influence of cultural conditions on coal solubilization by Penicillium simplicissimum. J Chem Tech Biotechnol 57:121–125. https://doi.org/10.1002/jctb.280570205

    Article  CAS  Google Scholar 

  42. Jain N, Bhargava A, Majumdar S, Tarafdar J, Panwar J (2011) Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: A mechanism perspective. Nanoscale 3(2):635–641. https://doi.org/10.1039/C0NR00656D

    Article  CAS  PubMed  Google Scholar 

  43. Elamawi R, Al-Harbi R, Hendi A (2018) Biosynthesis and characterization of silver nanoparticles using Trichoderma longibrachiatum and their effect on phytopathogenic fungi. Egypt J Biol Pest Control 28(1). https://doi.org/10.1186/s41938-018-0028-1

  44. Almeida S, de Oliveira D, Hotza D (2017) Characterization of silver nanoparticles produced by biosynthesis mediated by Fusarium oxysporum under different processing conditions. Bioprocess Biosyst Eng. https://doi.org/10.1007/s00449-017-1788-9

    Article  PubMed  Google Scholar 

  45. Honary S, Barabadi H, Gharaei-Fathabad E, Naghibi F (2013) Green synthesis of silver nanoparticles induced by the fungus Penicillium citrinum. Trop J Pharm Res 12(1):7–11. https://doi.org/10.4314/tjpr.v12i1.2

    Article  CAS  Google Scholar 

  46. Majeed S, Abdullah M, Nanda A, Ansari M (2018) In vitro study of the antibacterial and anticancer activities of silver nanoparticles synthesized from Penicillium brevicompactum (MTCC-1999). J Taibah Univ Sci 10(4):614–620. https://doi.org/10.1016/j.jtusci.2016.02.010

    Article  Google Scholar 

  47. Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R et al (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B 28(4):313–318. https://doi.org/10.1016/S0927-7765(02)00174-1

    Article  CAS  Google Scholar 

  48. Guilger M, Lima R (2019) Synthesis of silver nanoparticles mediated by Fungi: a review. Front Bioeng Biotechnol 7:287. https://doi.org/10.3389/fbioe.2019.00287

    Article  Google Scholar 

  49. Zomorodian K, Pourshahid S, Sadatsharifi A, Mehryar P, Pakshir K, Rahimi M et al (2016) Biosynthesis and characterization of silver nanoparticles by Aspergillus species. Biomed Res Int 2016:1–6. https://doi.org/10.1155/2016/5435397

    Article  CAS  Google Scholar 

  50. Jaidev L, Narasimha G (2010) Fungal mediated biosynthesis of silver nanoparticles, characterization and antimicrobial activity. Colloids Surf B 81(2):430–433. https://doi.org/10.1016/j.colsurfb.2010.07.033

    Article  CAS  Google Scholar 

  51. El-Moslamy S, Elkady M, Rezk A, Abdel-Fattah Y (2017) Applying Taguchi design and large-scale strategy for mycosynthesis of nano-silver from endophytic Trichoderma harzianum SYA.F4 and its application against phytopathogens. Sci Rep 7(1):Article number: 45297. https://doi.org/10.1038/srep45297

    Article  CAS  PubMed Central  Google Scholar 

  52. Naveen H, Kumar G, Karthik L, Rao B (2010) Extracellular biosynthesis of silver nanoparticles using the filamentous fungus Penicillium sp. Arch Appl Sci Res 2(6):161–167

    Google Scholar 

  53. Devi L, Joshi S (2014) Ultrastructures of silver nanoparticles biosynthesized using endophytic fungi. J Microsc Ultrastruct 3(1):29–37. https://doi.org/10.1016/j.jmau.2014.10.004

    Article  PubMed  PubMed Central  Google Scholar 

  54. Shahzad A, Saeed H, Iqtedar M, Hussain S, Kaleem A, Abdullah R, Sharif S, Naz S, Saleem F, Aihetasham A, Chaudhary A (2019) Size-controlled production of silver nanoparticles by Aspergillus fumigatus BTCB10: likely antibacterial and cytotoxic effects. Hindawi J Nanomater 2019:Article ID 5168698. https://doi.org/10.1155/2019/5168698 (14 pages)

    Article  CAS  Google Scholar 

  55. Moritz M, Geszke-moritz M (2013) The newest achievements in synthesis, immobilization and practical applications of antibacterial nanoparticles. Chem Eng J 228:596–613. https://doi.org/10.1016/j.cej.2013.05.046

    Article  CAS  Google Scholar 

  56. Ottoni C, Simões M, Fernandes S, dos Santos J, da Silva ES, de Souza R et al (2017) Screening of filamentous fungi for antimicrobial silver nanoparticles synthesis. AMB Express 7(31):1–10. https://doi.org/10.1186/s13568-017-0332-2

    Article  CAS  Google Scholar 

  57. Ibrahim H, Hassan M (2016) Characterization and antimicrobial properties of cotton fabric loaded with green synthesized silver nanoparticles. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2016.05.041

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

To the Government of Boyacá for the call 733 of 2015 for high-level human capital formation for the Department of Boyacá for funding the Ph.D. fellowship and to the Ministry of Science, Technology and Innovation of Colombia.

Funding

This study was financed with resources from the Science, Technology, and Innovation Fund of the General Royalties System FCTeI-SGR attached to the Department of Boyacá and through the HERMES 47144 project of the National University of Colombia; “Biosynthesis of silver nanoparticles from rhizospheric fungi and its immobilization in a natural fiber for in vitro control of phytopathogenic bacteria (Pectobacterium carotovorum)”.

Author information

Authors and Affiliations

Authors

Contributions

Mayra Beltrán-Pineda wrote the article and carried out the isolation, identification, and selection of promising fungi for AgNp’s biosynthesis; performed the biosynthesis of AgNps; and evaluated their antibacterial activity against the phytopathogenic agent P. carotovorum. Luz Marina Lizarazo-Forero and Cesar Augusto Sierra-Avila contributed to the design and supervision of the experimental work and the review of the article.

Corresponding author

Correspondence to Luz Marina Lizarazo Forero.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Jerri Zilli

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pineda, M.E.B., Lizarazo Forero, L.M. & Sierra Avila, C.A. Antibacterial activity of biosynthesized silver nanoparticles (AgNps) against Pectobacterium carotovorum. Braz J Microbiol 53, 1175–1186 (2022). https://doi.org/10.1007/s42770-022-00757-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-022-00757-7

Keywords

Navigation