Skip to main content
Log in

Molecular typing of multi-drug resistant Candida albicans isolated from the Segamat community, Malaysia

  • Fungal and Bacterial Physiology - Short Communication
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

In the past decade, researchers have focused on the emergence of drug resistance in fungal pathogens such as Candida albicans, also considered as pathobionts that occur harmlessly in the human body but could potentially be triggered to cause diseases. The increasing rate of antifungal resistance in commensal gut fungi is alarming and should be further investigated. Here, we report seven novel MLST (Multi Locus Sequence Typing) genotypes of multi-drug resistant C. albicans isolates obtained from participants of a community study in Segamat, a district in the state of Johor, Malaysia. A total of eight C. albicans were isolated from four individuals, which were found to express high resistance against fluconazole, itraconazole, voriconazole and 5-fluorocytosine antifungals. MLST was performed to assess the clonal relatedness of these drug resistant isolates among themselves and against other strains isolated from other geographical regions. The novel MLST C. albicans sequence types suggest significant genetic changes compared to previous genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Hallen-Adams HE, Suhr MJ (2017) Fungi in the healthy human gastrointestinal tract. Virulence 8(3):352–358

    Article  CAS  Google Scholar 

  2. Hallen-Adams HE, Kachman SD, Kim J, Legge RM, Martínez I (2015) Fungi inhabiting the healthy human gastrointestinal tract: a diverse and dynamic community. Fungal Ecol 15:9–17

    Article  Google Scholar 

  3. Kordalewska M, Zhao Y, Lockhart SR, Chowdhary A, Berrio I, Perlina DS (2017) Rapid and accurate molecular identification of the emerging. J Clin Microbiol 55(8):2445–2452

    Article  CAS  Google Scholar 

  4. Harari Y, Ram Y, Rappoport N, Hadany L, Kupiec M (2018) Spontaneous changes in ploidy are common in yeast. Curr Biol 28(6):825-835.e4

    Article  CAS  Google Scholar 

  5. Samarasinghe H, You M, Jenkinson TS, Xu J, James TY (2020) Hybridization facilitates adaptive evolution in two. Genes (Basel) 11:1–21

    Article  CAS  Google Scholar 

  6. Odds FC et al (2006) Candida albicans strain maintenance, replacement, and microvariation demonstrated by multilocus sequence typing. J Clin Microbiol 44(10):3647–3658

    Article  CAS  Google Scholar 

  7. Forche A, May G, Magee PT (2005) Demonstration of loss of heterozygosity by single-nucleotide polymorphism microarray analysis and alterations in strain morphology in Candida albicans strains during infection. Eukaryotic Cell 4(1):156–165. https://doi.org/10.1128/EC.4.1.156-165.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Coste A et al (2006) A mutation in Tac1p, a transcription factor regulating CDR1 and CDR2, is coupled with loss of heterozygosity at chromosome 5 to mediate antifungal resistance in Candida albicans. Genetics 172(4):2139–2156

    Article  CAS  Google Scholar 

  9. Coste A et al (2007) Genotypic evolution of azole resistance mechanisms in sequential Candida albicans isolates. Eukaryot Cell 6(10):1889–1904

    Article  CAS  Google Scholar 

  10. Xiang MJ et al (2013) Erg11 mutations associated with azole resistance in clinical isolates of Candida albicans. FEMS Yeast Res 13(4):386–393

    Article  CAS  Google Scholar 

  11. Wang B et al (2015) ERG11 mutations associated with azole resistance in Candida albicans isolates from vulvovaginal candidosis patients. Asian Pac J Trop Biomed 5(11):909–914

    Article  CAS  Google Scholar 

  12. Ene IV, Farrer RA, Hirakawa MP, Agwamba K, Cuomo CA, Bennett RJ (2018) Global analysis of mutations driving microevolution of a heterozygous diploid fungal pathogen. Proc Natl Acad Sci U S A 115(37):E8688–E8697

    Article  CAS  Google Scholar 

  13. Ksiezopolska E, Gabaldón T (2018) Evolutionary emergence of drug resistance in candida opportunistic pathogens. Genes 9(9):461. https://doi.org/10.3390/genes9090461

    Article  CAS  PubMed Central  Google Scholar 

  14. Spampinato C, Leonardi D (2013) Molecular fingerprints to identify Candida species. BioMed Res Int 2013:1–10. https://doi.org/10.1155/2013/923742

    Article  CAS  Google Scholar 

  15. Tavanti A et al (2005) Multilocus sequence typing for differentiation of strains of Candida tropicalis. J Clin Microbiol 43(11):5593–5600

    Article  CAS  Google Scholar 

  16. McManus BA et al (2008) Multilocus sequence typing reveals that the population structure of Candida dubliniensis is significantly less divergent than that of Candida albicans. J Clin Microbiol 46(2):652–664

    Article  CAS  Google Scholar 

  17. Bougnoux ME et al (2006) Multilocus sequence typing reveals intrafamilial transmission and microevolutions of Candida albicans isolates from the human digestive tract. J Clin Microbiol 44(5):1810–1820

    Article  CAS  Google Scholar 

  18. World Medical Association (2013) WMA Declaration of Helsinki — ethical principles for scientific requirements and research protocols. World Med Assoc (June 1964):29–32

  19. Huët MAL et al (2021) Investigation of culturable human gut mycobiota from the Segamat community in Johor, Malaysia. World J Microbiol Biotechnol 6:1–15

    Google Scholar 

  20. Clinical and Laboratory Standards Institute (CLSI) (2017) Reference method for broth dilution antifungal susceptibility testing of yeast CLSI 4th edition M27, 4th ed. Wayne, PA

  21. Bougnoux ME, Morand S, D’Enfert C (2002) Usefulness of multilocus sequence typing for characterization of clinical isolates of Candida albicans. J Clin Microbiol 40(4):1290–1297

    Article  CAS  Google Scholar 

  22. Zhang N et al (2018) Multi-locus next-generation sequence typing of DNA extracted from pooled colonies detects multiple unrelated Candida albicans strains in a significant proportion of patient samples. Front. Microbiol. 9(JUN):1–11

    Google Scholar 

  23. Hall T (2011) BioEdit: an important software for molecular biology. GERF Bull Biosci 2(June):60–61

    Google Scholar 

  24. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549

    Article  CAS  Google Scholar 

  25. Stecher G, Tamura K, Kumar S (2020) Molecular evolutionary genetics analysis (MEGA) for macOS. Mol Biol Evol 37(4):1237–1239

    Article  CAS  Google Scholar 

  26. Da Matta DA, Melo AS, Guimarães T, Frade JP, Lott TJ, Colombo AL (2010) Multilocus sequence typing of sequential Candida albicans isolates from patients with persistent or recurrent fungemia. Med Mycol 48(5):757–762

    Article  Google Scholar 

  27. Cliff PR, Sandoe JAT, Heritage J, Barton RC (2008) Use of multilocus sequence typing for the investigation of colonisation by Candida albicans in intensive care unit patients. J Hosp Infect 69(1):24–32

    Article  CAS  Google Scholar 

  28. Chen KW et al (2006) Multilocus sequence typing for analyses of clonality of Candida albicans strains in Taiwan. J Clin Microbiol 44(6):2172–2178

    Article  CAS  Google Scholar 

  29. Afsarian MH, Badali H, Boekhout T, Shokohi T, Katiraee F (2015) Multilocus sequence typing of candida albicans isolates from a burn intensive care unit in Iran. J Med Microbiol 64(3):248–253

    Article  CAS  Google Scholar 

  30. Moorhouse AJ, Rennison C, Raza M, Lilic D, Gow NAR (2016) Clonal strain persistence of Candida albicans isolates from chronic mucocutaneous candidiasis patients. PLoS One 11(2):1–15

    Article  Google Scholar 

  31. Gammelsrud KW et al (2012) Multilocus sequence typing of serial Candida albicans isolates from children with cancer, children with cystic fibrosis and healthy controls. Med Mycol 50(6):619–626

    Article  CAS  Google Scholar 

  32. Gong YB et al (2018) Multilocus sequence typing of Candida albicans isolates from the oral cavities of patients undergoing haemodialysis. Sci Rep 8(1):1–8

    Google Scholar 

  33. Oliveira Carvalho V, Okay TS, Melhem MSC, WalderezSzeszs M, del Negro GMB (2013) The new mutation L321F in Candida albicans ERG11 gene may be associated with fluconazole resistance. Rev Iberoam Micol 30(3):209–212

    Article  Google Scholar 

  34. Sardari A, Zarrinfar H, Mohammadi R (2019) Detection of ERG11 point mutations in Iranian fluconazole-resistant Candida albicans isolates. Curr Med Mycol 5(1):7–14

    PubMed  PubMed Central  Google Scholar 

  35. dos Santos Silva DB, Carbonera Rodrigues LM, De Almeida AA, de Oliveira KMP, Grisolia AB (2016) Novel point mutations in the ERG11 gene in clinical isolates of azole resistant Candida species. Mem Ins. Oswaldo Cruz 111(3):192–199

    Article  Google Scholar 

  36. Flowers SA, Colón B, Whaley SG, Schuler MA, David Rogers P (2015) Contribution of clinically derived mutations in ERG11 to azole resistance in Candida albicans. Antimicrob Agents Chemother 59(1):450–460

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Monash University Malaysia, the Tropical Medicine and Biology Multidisciplinary Platform (Monash University Malaysia) and the South East Asia Community Observatory (Segamat, State of Johor, Malaysia) for their support.

Funding

This study was supported by Monash University Malaysia multidisciplinary project funding [LG-2017–01-SCI], Monash University Australia funding [SCI/MUA/02–2019/001], Monash University Malaysia School of Science and the Tropical Medicine and Biology Multidisciplinary Platform.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joash Ban Lee Tan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Sandro Rogerio de Almeida

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary file1

Minimum inhibitory concentration (MIC) values obtained with the community isolates and control strains can be found in Table S1. (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huët, M.A.L., Muzahid, N.H., Lee, C.Z. et al. Molecular typing of multi-drug resistant Candida albicans isolated from the Segamat community, Malaysia. Braz J Microbiol 52, 2351–2356 (2021). https://doi.org/10.1007/s42770-021-00558-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-021-00558-4

Keywords

Navigation