Skip to main content
Log in

Comparison of stress conditions to induce viable but non-cultivable state in Salmonella

  • Food Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Salmonella can enter on the viable but non-culturable state (VBNC), characterized by the loss of ability to grow in routine culture media hindering detection by conventional methods and underestimation of the pathogen. Despite advances in research done so far, studies comparing conditions that lead Salmonella into the VBNC state are scarce. The main objective of this study was to evaluate different stresses to induce Salmonella to the VNBC state. Osmotic (1.2 M NaCl), acid (peracetic acid, 5.66 mg/mL) and oxidative (hydrogen peroxide, 1.20 mg/mL) stress were used at 4 °C to induce Salmonella enterica serovars Enteritidis and Typhimurium to the VBNC state. The culturability loss was monitored in the brain heart infusion (BHI) broth and agar, and the viability was determined by fluorescence microscopy, using the Live/Dead® kit, and by flow cytometry. Besides, the morphological characterization by atomic force microscopy (AFM) was performed. Storage in 1.2 M NaCl at 4 °C induced the VBNC state in Salmonella cells for periods longer than 121 days, and the percentage of viable cells has reached above 80.9%. More aggressive stress conditions promoted by peracetic acid and hydrogen peroxide induced the VBNC state in periods of, at most 0.14 day, and resulted in percentages of 8.5% to 45.5% viable cells, respectively. The counts of viable cells in the flow cytometer corroborate the results obtained by microscopic counts. The VBNC cells obtained in 1.2 M NaCl at 4 °C showed morphological changes, reducing the size and changing the morphology from bacillary to coccoid. No morphological change was observed on the cells stressed by acid or oxidant compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Xiao L, Zhang Z, Sun X, Pan Y, Zhao Y (2015) Development of a quantitative real-time PCR assay for viable Salmonella spp. without enrichment. Food Control 57:185-189. https://doi.org/10.1016/j.foodcont.2015.03.050

    Article  CAS  Google Scholar 

  2. WHO – World Health Organization (2019) Salmonella non–typhoidal https://www.who.int/en/news-room/fact-sheets/detail/salmonella-(non-typhoidal). Accessed 3 June 2019

  3. D’Aoust J, Maurer J (2007) Salmonella species. In: Doyle M, Beuchat L (eds) Food microbiology, 3rd edn, pp 187–236

    Google Scholar 

  4. Álvarez-Ordóñez A, Prieto M, Bernardo A (2012) The acid tolerance response of Salmonella spp.: an adaptive strategy to survive in stressful environments prevailing in foods and the host. Food Res Int 45:482–492. https://doi.org/10.1016/j.foodres.2011.04.002

    Article  Google Scholar 

  5. Gerdes K, Maisonneuve E (2012) Bacterial persistence and toxin-antitoxin loci. Ann Rev Microbiol 66:103–123. https://doi.org/10.1146/annurev-micro-092611-150159

    Article  CAS  Google Scholar 

  6. Ayrapetyan M, Williams T, Oliver JD (2018) Relationship between the viable but nonculturable state and antibiotic persister cells. J Bacteriol 200(20):1–15. https://doi.org/10.1128/JB.00249-18

    Article  Google Scholar 

  7. Asakura H, Makino S, Takagi T, Kuri A, Kurazono T, Watarai M, Shirahata T (2002) Passage in mice causes a change in the ability of Salmonella enterica serovar Oranienburg to survive NaCl osmotic stress: resuscitation from the viable but non-culturable state. FEMS Microbiol Lett 212(1):87–93. https://doi.org/10.1111/j.1574-6968.2002.tb11249.x

    Article  CAS  PubMed  Google Scholar 

  8. Li L, Mendis N, Trigui H, Oliver JD, Faucher S (2014) The importance of the viable but non-culturable state in human bacterial pathogens. Front Microbiol 5:1–20. https://doi.org/10.3389/fmicb.2014.00258

    Article  Google Scholar 

  9. Ramamurthy T, Ghosh A, Pazhani GP, Shinoda S (2014) Current perspectives on viable but non-culturable (VBNC) pathogenic bacteria. Front Public Health 2:1–19. https://doi.org/10.3389/fpubh.2014.00103

    Article  Google Scholar 

  10. Pienaar JA, Singh A, Barnard GT (2019) Acid-happy: survival and recovery of enteropathogenic Escherichia coli (EPEC) in simulated gastric fluid. Microb Pathog 128:396–404. https://doi.org/10.1016/j.micpath.2019.01.022

    Article  CAS  PubMed  Google Scholar 

  11. Li Y, Yang L, Yan M, Chen D, Zhang L (2017) The novel loop-mediated isothermal amplification based confirmation methodology on the bacteria in viable but non-culturable (VBNC) state. Microb Pathog 111:280–284. https://doi.org/10.1016/j.micpath.2017.09.007

    Article  CAS  PubMed  Google Scholar 

  12. Makino SI, Kii T, Asakura H, Shirahata T, Ikeda T, Takeshi K, Itoh K (2000) Does enterohemorrhagic Escherichia coli O157:H7 enter the viable but nonculturable state in salted salmon roe? Appl Environ Microbiol 66(12):5536–5539. https://doi.org/10.1128/aem.66.12.5536-5539.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Oliver JD (2010) Recent findings on the viable but nonculturable state in pathogenic bacteria. FEMS Microbiol Rev 34(4):415–425. https://doi.org/10.1111/j.1574-6976.2009.00200.x

    Article  CAS  PubMed  Google Scholar 

  14. Pinto A, Santos MA, Chambel L (2015) Thirty years of viable but nonculturable state research: unsolved molecular mechanisms. Crit Rev Microbiol 41(1):61–76. https://doi.org/10.3109/1040841X.2013.794127

    Article  PubMed  Google Scholar 

  15. Rodrigues RC, Martins E, Vanetti MCD, Pinto UM, Santos MT (2015) Induction of the viable but nonculturable state of Salmonella enterica serovar Enteritidis deficient in (p)ppGpp synthesis. Ann Microbiol 65:2171–2178. https://doi.org/10.1007/s13213-015-1057-6

    Article  CAS  Google Scholar 

  16. Ferro S, Amorico T, Deo P (2018) Role of food sanitizing treatments in inducing the ‘viable but nonculturable’ state of microorganisms. Food Control 91:321–329. https://doi.org/10.1016/j.foodcont.2018.04.016

    Article  Google Scholar 

  17. Reissbrodt R, Rienaecker I, Romanova JM, Freestone PPE, Haigh RD, Lyte M, Tscha H, Williams PH (2002) Resuscitation of Salmonella enterica serovar Typhimurium and enterohemorrhagic Escherichia coli from the viable but nonculturable state by heat-stable enterobacterial autoinducer. Appl Environ Microbiol 68(10):4788–4794. https://doi.org/10.1128/AEM.68.10.4788-4794

  18. Gupte AR, Rezende CLE, Joseph SW (2003) Induction and resuscitation of viable but nonculturable Salmonella enterica serovar Typhimurium DT104. Appl Environ Microbiol 69:6669–6675. https://doi.org/10.1128/AEM.69.11.6669-6675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Panutdaporn N, Kawamoto K, Asakura H, Makino SI (2006) Resuscitation of the viable but non-culturable state of Salmonella enterica serovar Oranienburg by recombinant resuscitation-promoting factor derived from Salmonella Typhimurium strain LT2. Int J Food Microbiol 106:241–247. https://doi.org/10.1016/j.ijfoodmicro.2005.06.022

    Article  CAS  PubMed  Google Scholar 

  20. Zeng B, Zhao G, Cao X, Yang Z, Wang CH, Hou L (2012) Formation and resuscitation of viable but nonculturable Salmonella typhi. BioMed Res Intern 2013:1–7. https://doi.org/10.1155/2013/907170

    Article  CAS  Google Scholar 

  21. Jolivet-Gougeon SF, Bonnaure-Mallet M, Colwell R, Cormier M (2006) Virulence of viable but nonculturable S. Typhimurium LT2 after peracetic acid treatment. Int. J. Food Microbiol 112:147–152. https://doi.org/10.1016/j.ijfoodmicro.2006.06.019

    Article  CAS  Google Scholar 

  22. Fernandes E, Martins VC, Nóbrega C, Carvalho CM, Cardoso FA, Cardoso S, Azeredo J (2014) Bacteriophage detection tool for viability assessment of Salmonella cells. Biosens Bioelectron 52(15):239–246. https://doi.org/10.1016/j.bios.2013.08.053

    Article  CAS  PubMed  Google Scholar 

  23. Oliver JD, Dagher M, Linden K (2005) Induction of Escherichia coli and Salmonella Typhimurium into the viable but nonculturable state following chlorination of wastewater. J Water Health 3:249–257. https://doi.org/10.2166/wh.2005.040

    Article  CAS  PubMed  Google Scholar 

  24. Spilimbergo S, Cappelletti M, Tamburini S, Ferrentino G,  Foladori P (2014) Partial permeabilization and depolarization of Salmonella enterica Typhimurium cells after treatment with pulsed electric fields and high pressure carbon dioxide. Process Biochem 49:2055–2062.https://doi.org/10.1016/j.procbio.2014.10.003

  25. Caro A, Got P, Lesne J, Binard S, Baleux B (1999) Viability and virulence of experimentally stressed nonculturable Salmonella Typhimurium. Appl Environ Microbiol 65(7):3229–3232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ayrapetyan M, Oliver JD (2016) The viable but non-culturable state and its relevance in food safety. Curr Opin Food Sci 8:127–133. https://doi.org/10.1016/j.cofs.2016.04.010

    Article  Google Scholar 

  27. Zheng B, Zhao G, Cao X, Yang Z, Wang C, Hou L (2013) Formation and resuscitation of viable but nonculturable Salmonella typhi. BioMed Res Inter ID 907170:1–7. https://doi.org/10.1155/2013/907170

    Article  CAS  Google Scholar 

  28. Vázquez-Sánchez D, Cabo M, Ibusquiza P, Herrera J (2014) Biofilm-forming ability and resistance to industrial disinfectants of Staphylococcus aureus isolated from fishery products. Food Control 39:8–16. https://doi.org/10.1016/j.foodcont.2013.09.029

    Article  CAS  Google Scholar 

  29. Morishige Y, Fujimori K, Amano F (2015) Use of flow cytometry for quantitative analysis of metabolism of viable but non-culturable (VBNC) Salmonella. Biol Pharm Bull 38(9):1255–1264. https://doi.org/10.1248/bpb.b15-00005

    Article  CAS  PubMed  Google Scholar 

  30. Gabriel A (2013) Influences of simultaneous physicochemical stresses on injury and subsequent heat and acid resistances of Salmonella Enteritidis in apple juice. Food Control 31:28–34. https://doi.org/10.1016/j.foodcont.2012.08.021

    Article  CAS  Google Scholar 

  31. Yang Y, Kadim MI, Khoo WJ, Zheng Q, Setyawati MI, Shin YJ, Yuk HG (2014) Membrane lipid composition and stress/virulence related gene expression of Salmonella Enteritidis cells adapted to lactic acid and trisodium phosphate and their resistance to lethal heat and acid stress. Int J Food Microbiol 191:24–31. https://doi.org/10.1016/j.ijfoodmicro.2014.08.034

    Article  CAS  PubMed  Google Scholar 

  32. Chaveerach P, Ter Huurne A, Lipman LJA, van Knapen F (2003) Survival and resuscitation of ten strains of Campylobacter jejuni and Campylobacter coli under acid conditions. Appl Environ Microbiol 69:711–714. https://doi.org/10.1128/AEM.69.1.711-714.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cunningham E, O’Byrne C, Oliver JD (2009) Effect of weak acids on Listeria monocytogenes survival: evidence for a viable but nonculturable state in response to low pH. Food Control 20:1141–1144. https://doi.org/10.1016/j.foodcont.2009.03.005

    Article  CAS  Google Scholar 

  34. Asakura H, Igimi SI, Kawamoto K, Yamamoto S, Makino B (2005) Role of in vivo passage on the environmental adaptation of enterohemorrhagic Escherichia coli O157:H7: cross-induction of the viable but nonculturable state by osmotic and oxidative stresses. FEMS Microbiol Lett 253:243–249. https://doi.org/10.1016/j.femsle.2005.09.039

    Article  CAS  PubMed  Google Scholar 

  35. Nowakowska J, Oliver JD (2013) Resistance to environmental stresses by Vibrio vulnificus in the viable but nonculturable state. FEMS Microbiol Ecol 84(1):213–222. https://doi.org/10.1111/1574-6941.12052

    Article  CAS  PubMed  Google Scholar 

  36. Wai SN, Mizunoe Y, Takade A, Yoshida S (2000) A comparison of solid and liquid media for resuscitation of starvation- and low-temperature-induced nonculturable cells of Aeromonas hydrophila. Arch Microbiol 173:307–310. https://doi.org/10.1007/s002030000142

    Article  CAS  PubMed  Google Scholar 

  37. Coutard F, Pommepuy M, Loaec S, Hervio-Heath D (2005) mRNA detection by reverse transcription-PCR for monitoring viability and potential virulence in pathogenic strain of Vibrio parahaemolyticus in viable but nonculturable state. J Appl Microbiol 98:951–961. https://doi.org/10.1128/AEM.66.10.4564-4567.2000

    Article  CAS  PubMed  Google Scholar 

  38. Passerat J, Got P, Dinkan S, Monfort P (2009) Respective roles of culturable and viable-but-nonculturable cells in the heterogeneity of Salmonella enterica serovar Typhimurium invasiveness. Appl Environ Microbiol 75(16):5179–5185. https://doi.org/10.1128/AEM.00334-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pinto A, Almeida V, Santos M, Chambel L (2011) Resuscitation of Escherichia coli VBNC cells depends on a variety of environmental or chemical stimuli. J Appl Microbiol 110:1601–1611. https://doi.org/10.1111/j.1365-2672.2011.05016.x

    Article  CAS  PubMed  Google Scholar 

  40. Magajna A, Schraft H (2015) Campylobacter jejuni biofilm cells become viable but non-culturable (VBNC) in low nutrient conditions at 4 C more quickly than their planktonic counterparts. Food Control 50:45–50. https://doi.org/10.1016/j.foodcont.2014.08.022

    Article  CAS  Google Scholar 

  41. Dolezalova E, Lukes P (2015) Membrane damage and active but nonculturable state in liquid cultures of Escherichia coli treated with an atmospheric pressure plasma jet. Bioelectrochem 103:7–14. https://doi.org/10.1016/j.bioelechem.2014.08.018

    Article  CAS  Google Scholar 

  42. Lindbäck T, Rottenberg ME, Roche SM, Rørvik LM (2010) The ability to enter into an avirulent viable but non-culturable (VBNC) form is widespread among Listeria monocytogenes isolates from salmon, patients and environment. Vet Res 41(8):1–10. https://doi.org/10.1051/vetres/2009056

    Article  CAS  Google Scholar 

  43. Dinu LD, Bach S (2011) Induction of viable but nonculturable Escherichia coli O157:H7 in the phyllosphere of lettuce: a food safety risk factor. Appl Environ Microbiol 77(23):8295–8302. https://doi.org/10.1128/AEM.05020-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hoefman S, Hoorde K, Boon N, Vandamme P, De-Vos P, Heylen K (2012) Survival or revival: long-term preservation induces a reversible viable but non-culturable state in methane-oxidizing bacteria. PLoS One 7(4):1–9. https://doi.org/10.1371/journal.pone.0034196

    Article  CAS  Google Scholar 

  45. Zhao F, Bi X, Hao Y, Liao X (2013) Induction of viable but nonculturable Escherichia coli O157:H7 by high pressure CO2 and its characteristics. PLoS One 84:1–9. https://doi.org/10.1371/journal.pone.0062388

    Article  CAS  Google Scholar 

  46. Postnikova OA, SHAO J, Mock NM, Baker CJ, Nemchinov LG (2015) Gene expression profiling in viable but nonculturable (VBNC) cells of Pseudomonas syringae pv. syringae. Front Microbiol 6:1–14. https://doi.org/10.3389/fmicb.2015.01419

    Article  Google Scholar 

  47. Khan MMT, Pyle BH, Camper AK (2010) Specific and rapid enumeration of viable but nonculturable and viable-culturable gram-negative bacteria by using flow cytometry. Appl Environ Microbiol 76:5088–5096. https://doi.org/10.1128/AEM.02932-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jiang X, Chai TJ (1996) Survival of Vibrio parahaemolyticus at low temperatures under starvation conditions and subsequent resuscitation of viable, nonculturable cells. Appl Environ Microbiol 62(4):1300–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the CAPES “Coordenação de Aperfeiçoamento de Pessoal de Nível Superior” for supporting Andres Felipe Vanegas Salive with the scholarship and funding resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Cristina Dantas Vanetti.

Ethics declarations

Conflict of interest

None.

Additional information

Responsible Editor: Mariza Landgraf.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salive, A.F.V., Prudêncio, C.V., Baglinière, F. et al. Comparison of stress conditions to induce viable but non-cultivable state in Salmonella. Braz J Microbiol 51, 1269–1277 (2020). https://doi.org/10.1007/s42770-020-00261-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-020-00261-w

Keywords

Navigation