Skip to main content
Log in

Technological properties of Lactococcus lactis subsp. lactis bv. diacetylactis obtained from dairy and non-dairy niches

  • Food Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Lactococcus lactis subsp. lactis bv. diacetylactis strains are often used as starter cultures by the dairy industry due to their production of acetoin and diacetyl, important substances that add buttery flavor notes in dairy products. Twenty-three L. lactis subsp. lactis isolates were obtained from dairy products (milk and cheese) and dairy farms (silage), identified at a biovar level, fingerprinted by rep-PCR and characterized for some technological features. Fifteen isolates presented molecular and phenotypical (diacetyl and citrate) characteristics coherent with L. lactis subsp. lactis bv. diacetylactis and rep-PCR allowed the identification of 12 distinct profiles (minimum similarity of 90%). Based on technological features, only two isolates were not able to coagulate skim milk and 10 were able to produce proteases. All isolates were able to acidify skim milk: two isolates, in special, presented high acidifying ability due to their ability in reducing more than two pH units after 24 h. All isolates were also able to grow at different NaCl concentrations (0 to 10%, w/v), and isolates obtained from peanut and grass silages presented the highest NaCl tolerance (10%, w/v). These results indicate that the L. lactis subsp. lactis bv. diacetylactis isolates presented interesting technological features for potential application in fermented foods production. Despite presenting promising technological features, the isolates must be assessed according to their safety before being considered as starter cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Carr FJ, Chill D, Maida N (2002) The lactic acid bacteria: a literature survey. Crit Rev Microbiol 28(4):281–370. https://doi.org/10.1080/1040-840291046759

    Article  CAS  PubMed  Google Scholar 

  2. Leroy F, De Vuyst L (2004) Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci Technol 15(2):67–78. https://doi.org/10.1016/j.tifs.2003.09.004

    Article  CAS  Google Scholar 

  3. Schleifer KH, Kraus J, Dvorak C, Kilpper-Bälz R, Collins MD, Fischer W (1985) Transfer of Streptococcus lactis and related Streptococci to the genus Lactococcus gen. nov. Syst Appl Microbiol 6(3):183–195. https://doi.org/10.1016/S0723-2020(85)80052-7

    Article  CAS  Google Scholar 

  4. Nomura M, Kobayashi M, Narita T, Kimoto-Nira H, Okamoto T (2006) Phenotypic and molecular characterization of Lactococcus lactis from milk and plants. J Appl Microbiol 101(2):396–405. https://doi.org/10.1111/j.1365-2672.2006.02949.x

    Article  CAS  PubMed  Google Scholar 

  5. Dal Bello B, Cocolin L, Zeppa G, Field D, Cotter PD, Hill C (2012) Technological characterization of bacteriocin producing Lactococcus lactis strains employed to control Listeria monocytogenes in Cottage cheese. Int J Food Microbiol 153(1–2):58–65. https://doi.org/10.1016/j.ijfoodmicro.2011.10.016

    Article  PubMed  Google Scholar 

  6. Laroute V, Tormo H, Couderc C, Mercier-Bonin M, Le Bourgeois P, Cocaign-Bousquet M, Daveran-Mingot ML (2017) From genome to phenotype: an integrative approach to evaluate the biodiversity of Lactococcus lactis. Microorganisms 5(2):27. https://doi.org/10.3390/microorganisms5020027

    Article  CAS  PubMed Central  Google Scholar 

  7. Kempler GM, McKay LL (1981) Biochemistry and genetics of citrate utilization in Streptococcus lactis ssp. diacetylactis. J Dairy Sci 64(7):1527–1539. https://doi.org/10.3168/jds.s0022-0302(81)82721-x

    Article  CAS  Google Scholar 

  8. García-Quintáns N, Repizo G, Martín M, Magni C, López P (2008) Activation of the diacetyl/acetoin pathway in Lactococcus lactis subsp. lactis bv. diacetylactis CRL264 by acidic growth. Appl Environ Microbiol 74(7):1988–1996. https://doi.org/10.1128/AEM.01851-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Curioni PMG, Bosset JO (2002) Key odorants in various cheese types as determined by gas chromatography-olfactometry. Int Dairy J 12(12):959–984. https://doi.org/10.1016/S0958-6946(02)00124-3

    Article  CAS  Google Scholar 

  10. Urbach G (1997) The flavour of milk and dairy products: II. Cheese: Contribution of volatile compounds. Int J Dairy Technol 50(3):79–89. https://doi.org/10.1111/j.1471-0307.1997.tb01743.x

    Article  CAS  Google Scholar 

  11. Smit G, Smit BA, Engels WJM (2005) Flavour formation by lactic acid bacteria and biochemical flavour profiling of cheese products. FEMS Microbiol Rev 29(3 SPEC. ISS):591–610. https://doi.org/10.1016/j.femsre.2005.04.002

    Article  CAS  PubMed  Google Scholar 

  12. Deegan LH, Cotter PD, Hill C, Ross P (2006) Bacteriocins: biological tools for bio-preservation and shelf-life extension. Int Dairy J 16(9):1058–1071. https://doi.org/10.1016/j.idairyj.2005.10.026

    Article  CAS  Google Scholar 

  13. Cotter PD, Ross RP, Hill C (2013) Bacteriocins-a viable alternative to antibiotics? Nat Rev Microbiol 11(2):95–105. https://doi.org/10.1038/nrmicro2937

    Article  CAS  PubMed  Google Scholar 

  14. Delorme C, Godon JJ, Ehrlich SD, Renault P (1994) Mosaic structure of large regions of the Lactococcus lactis subsp. cremoris chromosome. Microbiology 140(11):3053–3060. https://doi.org/10.1099/13500872-140-11-3053

    Article  CAS  PubMed  Google Scholar 

  15. Beimfohr C, Ludwig W, Schleifer KH (1997) Rapid genotypic differentiation of Lactococcus lactis subspecies and biovar. Syst Appl Microbiol 20(2):216–221. https://doi.org/10.1016/S0723-2020(97)80068-9

    Article  Google Scholar 

  16. Passerini D, Laroute V, Coddeville M, Le Bourgeois P, Loubière P, Ritzenthaler P, Cocaign-Bousquet M, Daveran-Mingot M-L (2013) New insights into Lactococcus lactis diacetyl- and acetoin-producing strains isolated from diverse origins. Int J Food Microbiol 160(3):329–336. https://doi.org/10.1016/j.ijfoodmicro.2012.10.023

    Article  CAS  PubMed  Google Scholar 

  17. Pu Z, Dobos M, Limsowtin G (2002) Integrated polymerase chain reaction-based procedures for the detection and identification of species and subspecies of the Gram-positive bacterial genus. J Appl :353–361.

  18. Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA, Olsen GJ (2008) Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 74(8):2461–2470. https://doi.org/10.1128/AEM.02272-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kempler GM, McKay LL (1980) Improved medium for detection of citrate-fermenting Streptococcus lactis subsp. diacetylactis. Appl Environ Microbiol 39(4):926–927

    Article  CAS  Google Scholar 

  20. Franciosi E, Settanni L, Cavazza A, Poznanski E (2009) Biodiversity and technological potential of wild lactic acid bacteria from raw cows’ milk. Int Dairy J 19(1):3–11. https://doi.org/10.1016/j.idairyj.2008.07.008

    Article  CAS  Google Scholar 

  21. Dal Bello B, Rantsiou K, Bellio A, Zeppa G, Ambrosoli R, Civera T, Cocolin L (2010) Microbial ecology of artisanal products from North West of Italy and antimicrobial activity of the autochthonous populations. LWT Food Sci Technol 43(7):1151–1159. https://doi.org/10.1016/j.lwt.2010.03.008

    Article  CAS  Google Scholar 

  22. Alves MP, Salgado RL, Eller MR, Vidigal PMP, Fernandes de Carvalho A (2016) Characterization of a heat-resistant extracellular protease from Pseudomonas fluorescens 07A shows that low temperature treatments are more effective in deactivating its proteolytic activity. J Dairy Sci 99(10):7842–7851. https://doi.org/10.3168/jds.2016-11236

    Article  CAS  PubMed  Google Scholar 

  23. Adams DM, Barach JT, Speck ML (1976) Effect of psychrotrophic bacteria from raw milk on milk proteins and stability of milk proteins to ultrahigh temperature treatment. J Dairy Sci 59(5):823–827. https://doi.org/10.3168/jds.S0022-0302(76)84282-8

    Article  CAS  PubMed  Google Scholar 

  24. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  25. Psoni L, Kotzamanidis C, Yiangou M, Tzanetakis N, Litopoulou-Tzanetaki E (2007) Genotypic and phenotypic diversity of Lactococcus lactis isolates from Batzos, a Greek PDO raw goat milk cheese. Int J Food Microbiol 114(2):211–220. https://doi.org/10.1016/j.ijfoodmicro.2006.09.020

    Article  CAS  PubMed  Google Scholar 

  26. Kahala M, Mäki M, Lehtovaara A, Tapanainen JM, Katiska R, Juuruskorpi M, Juhola J, Joutsjoki V (2008) Characterization of starter lactic acid bacteria from the Finnish fermented milk product viili. J Appl Microbiol 105(6):1929–1938. https://doi.org/10.1111/j.1365-2672.2008.03952.x

    Article  CAS  PubMed  Google Scholar 

  27. Cavanagh D, Casey A, Altermann E, Cotter PD, Fitzgerald GF, McAuliffe O (2015) Evaluation of Lactococcus lactis isolates from nondairy sources with potential dairy applications reveals extensive phenotype-genotype disparity and implications for a revised species. Appl Environ Microbiol 81(12):3961–3972. https://doi.org/10.1128/AEM.04092-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Siezen RJ, Bayjanov JR, Felis GE, van der Sijde MR, Starrenburg M, Molenaar D, Wels M, van Hijum SAFT, van Hylckama Vlieg JET (2011) Genome-scale diversity and niche adaptation analysis of Lactococcus lactis by comparative genome hybridization using multi-strain arrays. Microb Biotechnol 4(3):383–402. https://doi.org/10.1111/j.1751-7915.2011.00247.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Domingos-Lopes MFP, Stanton C, Ross PR, Dapkevicius MLE, Silva CCG (2017) Genetic diversity, safety and technological characterization of lactic acid bacteria isolated from artisanal Pico cheese. Food Microbiol 63:178–190. https://doi.org/10.1016/j.fm.2016.11.014

    Article  CAS  PubMed  Google Scholar 

  30. Perin LM, Belviso S, Dal Bello B, Nero LA, Cocolin L (2017) Technological properties and biogenic amines production by bacteriocinogenic Lactococci and Enterococci strains isolated from raw goat’s milk. J Food Prot 80(1):151–157. https://doi.org/10.4315/0362-028x.jfp-16-267

    Article  CAS  PubMed  Google Scholar 

  31. Starrenburg M, Hugenholtz J (1991) Citrate fermentation by Lactococcus and Leuconostoc spp. Metab Clin Exp 57(12):3535–3540

    CAS  Google Scholar 

  32. Lucey JA, Johnson ME, Horne DS (2003) Invited review: perspectives on the basis of the rheology and texture properties of cheese. J Dairy Sci 86(9):2725–2743. https://doi.org/10.3168/jds.s0022-0302(03)73869-7

    Article  CAS  PubMed  Google Scholar 

  33. Piraino P, Zotta T, Ricciardi A, McSweeney PLH, Parente E (2008) Acid production, proteolysis, autolytic and inhibitory properties of lactic acid bacteria isolated from pasta filata cheeses: a multivariate screening study. Int Dairy J 18(1):81–92. https://doi.org/10.1016/j.idairyj.2007.06.002

    Article  CAS  Google Scholar 

  34. Herreros MA, Fresno JM, González Prieto MJ, Tornadijo ME (2003) Technological characterization of lactic acid bacteria isolated from Armada cheese (a Spanish goats’ milk cheese). Int Dairy J 13(6):469–479. https://doi.org/10.1016/S0958-6946(03)00054-2

    Article  CAS  Google Scholar 

  35. Liu M, Bayjanov JR, Renckens B, Nauta A, Siezen RJ (2010) The proteolytic system of lactic acid bacteria revisited: a genomic comparison. BMC Genomics 11(1):5–8. https://doi.org/10.1186/1471-2164-11-36

    Article  CAS  Google Scholar 

  36. Tulini FL, Hymery N, Haertlé T, Le Blay G, De Martinis ECP (2016) Screening for antimicrobial and proteolytic activities of lactic acid bacteria isolated from cow, buffalo and goat milk and cheeses marketed in the southeast region of Brazil. J Dairy Res 83(1):115–124. https://doi.org/10.1017/S0022029915000606

    Article  CAS  PubMed  Google Scholar 

  37. Visser S (1993) Proteolytic enzymes and their relation to cheese ripening and flavor: an overview. J Dairy Sci 76(1):329–350. https://doi.org/10.3168/jds.s0022-0302(93)77354-3

    Article  CAS  Google Scholar 

  38. González L, Sacristán N, Arenas R, Fresno JM, Eugenia Tornadijo M (2010) Enzymatic activity of lactic acid bacteria (with antimicrobial properties) isolated from a traditional Spanish cheese. Food Microbiol 27(5):592–597. https://doi.org/10.1016/j.fm.2010.01.004

    Article  CAS  PubMed  Google Scholar 

  39. Morandi S, Brasca M, Lodi R (2011) Technological, phenotypic and genotypic characterisation of wild lactic acid bacteria involved in the production of Bitto PDO Italian cheese. Dairy Sci Technol 91(3):341–359. https://doi.org/10.1007/s13594-011-0016-7

    Article  CAS  Google Scholar 

  40. Zuljan FA, Mortera P, Alarcón SH, Blancato VS, Espariz M, Magni C (2016) Lactic acid bacteria decarboxylation reactions in cheese. Int Dairy J 62:53–62. https://doi.org/10.1016/j.idairyj.2016.07.007

    Article  CAS  Google Scholar 

  41. Wouters JTM, Ayad EHE, Hugenholtz J, Smit G (2002) Microbes from raw milk for fermented dairy products. Int Dairy J 12(2–3):91–109. https://doi.org/10.1016/S0958-6946(01)00151-0

    Article  CAS  Google Scholar 

  42. Deveau H, Labrie SJ, Chopin MC, Moineau S (2006) Biodiversity and classification of lactococcal phages. Appl Environ Microbiol 72(6):4338–4346. https://doi.org/10.1128/AEM.02517-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mahony J, Murphy J, Van Sinderen D (2012) Lactococcal 936-type phages and dairy fermentation problems: from detection to evolution and prevention. Front Microbiol 3(SEP):1–9. https://doi.org/10.3389/fmicb.2012.00335

    Article  Google Scholar 

  44. Perin LM, Miranda RO, Todorov SD, Franco BDG d M, Nero LA (2014) Virulence, antibiotic resistance and biogenic amines of bacteriocinogenic lactococci and enterococci isolated from goat milk. Int J Food Microbiol 185:121–126. https://doi.org/10.1016/j.ijfoodmicro.2014.06.001

    Article  CAS  PubMed  Google Scholar 

  45. Lemay ML, Tremblay DM, Moineau S (2017) Genome engineering of virulent Lactococcal phages using CRISPR-Cas9. ACS Synth Biol 6(7):1351–1358. https://doi.org/10.1021/acssynbio.6b00388

    Article  CAS  PubMed  Google Scholar 

  46. Devirgiliis C, Zinno P, Perozzi G (2013) Update on antibiotic resistance in foodborne Lactobacillus and Lactococcus species. Front Microbiol 4:1–13. https://doi.org/10.3389/fmicb.2013.00301

    Article  Google Scholar 

  47. Buňková L, Buňka F, Hlobilová M, Vaňátková Z, Nováková D, Dráb V (2009) Tyramine production of technological important strains of Lactobacillus, Lactococcus and Streptococcus. Eur Food Res Technol 229(3):533–538. https://doi.org/10.1007/s00217-009-1075-3

    Article  CAS  Google Scholar 

  48. Flasarová R, Pachlová V, Buňková L, Menšíková A, Georgová N, Dráb V, Buňka F (2016) Biogenic amine production by Lactococcus lactis subsp. cremoris strains in the model system of Dutch-type cheese. Food Chem 194:68–75. https://doi.org/10.1016/j.foodchem.2015.07.069

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

CNPq, CAPES (financial code 001), FAPEMIG, and CIRM-BIA for the concession of reference strains.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luís Augusto Nero or Antônio Fernandes de Carvalho.

Additional information

Responsible Editor: Mariza Landgraf.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fusieger, A., Martins, M.C.F., de Freitas, R. et al. Technological properties of Lactococcus lactis subsp. lactis bv. diacetylactis obtained from dairy and non-dairy niches. Braz J Microbiol 51, 313–321 (2020). https://doi.org/10.1007/s42770-019-00182-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-019-00182-3

Keywords

Navigation