Skip to main content
Log in

Genetic Diversity and Some Aspects of Antimicrobial Activity of Lactic Acid Bacteria Isolated from Goat Milk

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Lactic acid bacteria (LAB, n = 57) were previously obtained from raw goat milk, identified as Lactococcus spp. (n = 24) and Enterococcus spp. (n = 33), and characterized as bacteriocinogenic. Fingerprinting by pulsed field gel electrophoresis (PFGE) demonstrated high genetic diversity, and 30 strains were selected and exhibited strong antimicrobial activity against 46 target strains (LAB, spoilage, and foodborne pathogens). Six strains (Lactococcus lactis: GLc03 and GLc05; and Enterococcus durans: GEn09, GEn12, GEn14, and GEn17) were selected to characterize their bacteriocinogenic features, using Listeria monocytogenes ATCC 7644 as the target. The six strains produced bacteriocins at higher titer when incubated in MRS at 37 °C up to 12 h, when compared to growth at 25 and 30 °C. The produced bacteriocins kept their antimicrobial activity after exposure to 100 °C for 2 h and 121 °C for 20 min; the antimicrobial activity was also observed after treatment at pH 2.0 to 10.0, except for GLc03. L. monocytogenes populations were reduced approximately two logs after treatment with cell-free supernatants from the selected strains. These data show that goat milk can contain a diverse microbiota able to inhibit L. monocytogenes, a common pathogen found in dairy products, and can be potentially employed in biopreservation of food produced under different processing conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aasen, I. M., Moretro, T., Katla, T., Axelsson, L., & Storro, I. (2000). Influence of complex nutrients, temperature and pH on bacteriocin production by Lactobacillus sakei CCUG 42687. Appl Microbiol Biotechnol, 53, 159–166.

    Article  CAS  Google Scholar 

  2. Achemchem, F., Cebrian, R., Abrini, J., Martinez-Bueno, M., Valdivia, E., & Maqueda, M. (2012). Antimicrobial characterization and safety aspects of the bacteriocinogenic Enterococcus hirae F420 isolated from Moroccan raw goat milk. Can J Microbiol, 58, 596–604.

    Article  CAS  Google Scholar 

  3. Achemchem, F., Martinez-Bueno, M., Abrini, J., Valdivia, E., & Maqueda, M. (2005). Enterococcus faecium F58, a bacteriocinogenic strain naturally occurring in Jben, a soft, farmhouse goat's cheese made in Morocco. J Appl Microbiol, 99, 141–150.

    Article  CAS  Google Scholar 

  4. Ahmadova, A., Todorov, S. D., Choiset, Y., Rabesona, H., Tannaz, M. Z., Kuliyev, A., Franco, B. D. G. M., Chobert, J. M., & Haertlé, T. (2013). Evaluation of antimicrobial activity, probiotic properties and safety of wild strain Enterococcus faecium AQ71 isolated from Azerbaijani Motal cheese. Food Control, 30, 631–641.

    Article  CAS  Google Scholar 

  5. Ananou, S., Maqueda, M., Martinez-Bueno, M., Galvez, A., & Valdivia, E. (2005). Control of Staphylococcus aureus in sausages by enterocin AS-48. Meat Sci, 71, 549–556.

    Article  CAS  Google Scholar 

  6. Badis, A., Guetarni, D., Moussa-Boudjemâa, B., Henni, D. E., Tornadijo, M. E., & Kihal, M. (2004). Identification of cultivable lactic acid bacteria isolated from Algerian raw goat’s milk and evaluation of their technological properties. Food Microbiol, 21, 343–349.

    Article  CAS  Google Scholar 

  7. Barros, M. A. F., Nero, L. A., Silva, L. C., D’Ovidio, L., Monteiro, F. A., Tamanini, R., Fagnani, R., Hofer, E., & Beloti, V. (2007). Listeria monocytogenes: occurrence in beef and identification of the main contamination points in processing plants. Meat Sci, 76, 591–596.

    Article  CAS  Google Scholar 

  8. Batdorj, B., Dalgalarrondo, M., Choiset, Y., Pedroche, J., Metro, F., Prevost, H., Chobert, J. M., & Haertle, T. (2006). Purification and characterization of two bacteriocins produced by lactic acid bacteria isolated from Mongolian airag. J Appl Microbiol, 101, 837–848.

    Article  CAS  Google Scholar 

  9. Biscola, V., Todorov, S. D., Capuano, V. S., Abriouel, H., Galvez, A., & Franco, B. D. (2013). Isolation and characterization of a nisin-like bacteriocin produced by a Lactococcus lactis strain isolated from charqui, a Brazilian fermented, salted and dried meat product. Meat Sci, 93, 607–613.

    Article  CAS  Google Scholar 

  10. Bromberg, R., Moreno, I., Delboni, R. R., & Cintra, H. C. (2006). Características da bacteriocina produzida por Lactococcus lactis subsp. hordniae CTC 484 e seu efeito sobre Listeria monocytogenes em carne bovina. Food Sci. Technol, 26, 135–144.

    CAS  Google Scholar 

  11. Campos, C. A., Rodriguez, O., Calo-Meta, P., Prado, M., & Barros-Velazquez, J. (2006). Preliminary characterization of bacteriocins from Lactococcus lactis, Enterococcus faecium and Enterococcus mundtii strains isolated from turbot (Psetta maxima). Food Res Int, 39, 356–364.

    Article  CAS  Google Scholar 

  12. Castro, M. P., Palavecino, N. Z., Herman, C., Garro, O. A., & Campos, C. A. (2011). Lactic acid bacteria isolated from artisanal dry sausages: characterization of antibacterial compounds and study of the factors affecting bacteriocin production. Meat Sci, 87, 321–329.

    Article  CAS  Google Scholar 

  13. Centeno, J. A., Fernandez-Garcia, E., Gaya, P., Tomillo, J., Medina, M., & Nunez, M. (2004). Volatile compounds in cheeses made from raw ewes’ milk ripened with a lactic culture. J Dairy Res, 71, 380–384.

    Article  CAS  Google Scholar 

  14. Cocolin, L., Foschino, R., Comi, G., & Grazia Fortina, M. (2007). Description of the bacteriocins produced by two strains of Enterococcus faecium isolated from Italian goat milk. Food Microbiol, 24, 752–758.

    Article  CAS  Google Scholar 

  15. Cosentino, S., Fadda, M. E., Deplano, M., Melis, R., Pomata, R., & Pisano, M. B. (2012). Antilisterial activity of nisin-like bacteriocin-producing Lactococcus lactis subsp. lactis isolated from traditional Sardinian dairy products. J Biomed Biotechnol, 2012, 376428.

    Article  Google Scholar 

  16. Cossi, M. V. C., Burin, R. C. K., Camargo, A. C., Dias, M. R., Lanna, F. G. P. A., Pinto, P. S. A., & Nero, L. A. (2014). Low occurrence of Salmonella in the beef processing chain from Minas Gerais state, Brazil: From bovine hides to end cuts. Food Control, 40, 320–323.

    Article  Google Scholar 

  17. Dal Bello, B., Cocolin, L., Zeppa, G., Field, D., Cotter, P. D., & Hill, C. (2012). Technological characterization of bacteriocin producing Lactococcus lactis strains employed to control Listeria monocytogenes in cottage cheese. Int J Food Microbiol, 153, 58–65.

    Article  Google Scholar 

  18. Dal Bello, B., Rantsiou, K., Bellio, A., Zeppa, G., Ambrosoli, R., Civera, T., & Cocolin, L. (2010). Microbial ecology of artisanal products from North West of Italy and antimicrobial activity of the autochthonous populations. LWT Food Sci Technol, 43, 1151–1159.

    Article  CAS  Google Scholar 

  19. de Arauz, L. J., Jozala, A. F., Mazzola, P. G., & Penna, T. C. V. (2009). Nisin biotechnological production and application: a review. Trends Food Sci Tech, 20, 146–154.

    Article  Google Scholar 

  20. de Kwaadsteniet, M., Todorov, S. D., Knoetze, H., & Dicks, L. M. (2005). Characterization of a 3944 Da bacteriocin, produced by Enterococcus mundtii ST15, with activity against Gram-positive and Gram-negative bacteria. Int J Food Microbiol, 105, 433–444.

    Article  Google Scholar 

  21. de Vuyst, L., Callewaert, R., & Crabbé, K. (1996). Primary metabolite kinetics of bacteriocin biosynthesis by Lactobacillus amylovorus and evidence for stimulation of bacteriocin production under unfavourable growth conditions. Microbiology, 142, 817–827.

    Article  Google Scholar 

  22. Deegan, L. H., Cotter, P. D., Hill, C., & Ross, P. (2006). Bacteriocins: biological tools for bio-preservation and shelf-life extension. Int Dairy J, 16, 1058–1071.

    Article  CAS  Google Scholar 

  23. Delgado, S., & Mayo, B. (2004). Phenotypic and genetic diversity of Lactococcus lactis and Enterococcus spp. strains isolated from Northern Spain starter-free farmhouse cheeses. Int. J. Food Microbiol, 90, 309–319.

    Article  CAS  Google Scholar 

  24. Du Toit, M., Franz, C. M. A. P., Dicks, L. M. T., & Holzapfel, W. H. (2000). Preliminary characterization of bacteriocins produced by Enterococcus faecium and Enterococcus faecalis isolated from pig faeces. J Appl Microbiol, 88, 482–494.

    Article  Google Scholar 

  25. Favaro, L., Basaglia, M., Casella, S., Hue, I., Dousset, X., Franco, B. D. G. M., & Todorov, S. D. (2014). Bacteriocinogenic potential and safety evaluation of non-starter Enterococcus faecium strains isolated from home made white brine cheese. Food Microbiol, 38, 228–239.

    Article  CAS  Google Scholar 

  26. Galvez, A., Abriouel, H., Lopez, R. L., & Ben Omar, N. (2007). Bacteriocin-based strategies for food biopreservation. Int J Food Microbiol, 120, 51–70.

    Article  CAS  Google Scholar 

  27. Gelsomino, R., Vancanneyt, M., Cogan, T. M., Condon, S., & Swings, J. (2002). Source of enterococci in a farmhouse raw-milk cheese. Appl Environ Microbiol, 68, 3560–3565.

    Article  CAS  Google Scholar 

  28. Graves, L. M., & Swaminathan, B. (2001). PulseNet standardized protocol for subtyping Listeria monocytogenes by macrorestriction and pulsed-field gel electrophoresis. Int J Food Microbiol, 65, 55–62.

    Article  CAS  Google Scholar 

  29. Gutiérrez-Méndez, N., Rodríguez-Figueroa, J. C., González-Córdova, A. F., Nevárez-Moorillón, G. V., Rivera-Chavira, B., & Vallejo-Cordoba, B. (2010). Phenotypic and genotypic characteristics of Lactococcus lactis strains isolated from different ecosystems. Can J Microbiol, 56, 432–439.

    Article  Google Scholar 

  30. Hadji-Sfaxi, I., El-Ghaish, S., Ahmadova, A., Batdorj, B., le Blay-Laliberté, G., Barbier, G., Haertlé, T., & Chobert, J. M. (2011). Antimicrobial activity and safety of use of Enterococcus faecium PC4.1 isolated from Mongol yogurt. Food Control, 22, 2020–2027.

    Article  Google Scholar 

  31. Han, E. J., Lee, N. K., Choi, S. Y., & Paik, H. D. (2013). Short communication: Bacteriocin KC24 produced by Lactococcus lactis KC24 from kimchi and its antilisterial effect in UHT milk. J Dairy Sci, 96, 101–104.

    Article  CAS  Google Scholar 

  32. Hennekinne, J. A., De Buyser, M. L., & Dragacci, S. (2012). Staphylococcus aureus and its food poisoning toxins: characterization and outbreak investigation. FEMS Microbiol Rev, 36, 815–836.

    Article  CAS  Google Scholar 

  33. Jurkovic, D., Krizkova, L., Sojka, M., Takacova, M., Dusinsky, R., Krajcovic, J., Vandamme, P., & Vancanneyt, M. (2007). Genetic diversity of Enterococcus faecium isolated from Bryndza cheese. Int J Food Microbiol, 116, 82–87.

    Article  CAS  Google Scholar 

  34. Leroy, F., & de Vuyst, L. (2004). Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci Tech, 15, 67–78.

    Article  CAS  Google Scholar 

  35. Lewus, C. B., & Montville, T. J. (1991). Detection of bacteriocins produced by lactic acid bacteria. J Microbiol Meth, 13, 145–150.

    Article  CAS  Google Scholar 

  36. Mannu, L., Paba, A., Pes, M., Floris, R., Scintu, M. F., & Morelli, L. (1999). Strain typing among enterococci isolated from home-made Pecorino Sardo cheese. FEMS Microbiol Lett, 170, 25–30.

    Article  CAS  Google Scholar 

  37. Mayr-Harting, A., Hedges, A. J., Berkeley, R. C. W. (1972), in Methods in Microbiology, vol. Volume 7, Part A, (Norris, J. R. and Ribbons, D. W., eds.), Academic Press, pp. 315-422.

  38. Montanhini, M. T. M., Colombo, M., Nero, L. A., & Bersot, L. S. (2013). Short communication: presence of neutral metallopeptidase (npr) gene and proteolytic activity of Bacillus cereus isolated from dairy products. J Dairy Sci, 96, 5641–5643.

    Article  CAS  Google Scholar 

  39. Nikolic, M., Terzic-Vidojevic, A., Jovcic, B., Begovic, J., Golic, N., & Topisirovic, L. (2008). Characterization of lactic acid bacteria isolated from Bukuljac, a homemade goat’s milk cheese. Int J Food Microbiol, 122, 162–170.

    Article  CAS  Google Scholar 

  40. Nishie, M., Nagao, J.-I., & Sonomoto, K. (2012). Antibacterial peptides “bacteriocins”: an overview of their diverse characteristics and applications. Biocontrol Sci, 17, 1–16.

    Article  CAS  Google Scholar 

  41. Okuklu, B. (2005) Investigation of chromosomal and plasmid dna profiles of Lactococcus lactis ssp. lactis. Master, Izmir Institute of Technology, Izmir.

  42. Olasupo, N. A., Schillinger, U., Narbad, A., Dodd, H., & Holzapfel, W. H. (1999). Occurrence of nisin Z production in Lactococcus lactis BFE 1500 isolated from wara, a traditional Nigerian cheese product. Int J Food Microbiol, 53, 141–152.

    Article  CAS  Google Scholar 

  43. Ortolani, M. B. T., Yamazi, A. K., Moraes, P. M., Vicosa, G. N., & Nero, L. A. (2010). Microbiological quality and safety of saw milk and soft cheese and detection of autochthonous lactic acid bacteria with antagonistic activity against Listeria monocytogenes, Salmonella spp., and Staphylococcus aureus. Foodborne Pathog Dis, 7, 175–180.

    Article  CAS  Google Scholar 

  44. Parente, E., & Ricciardi, A. (1994). Influence of pH on the production of enterocin 1146 during batch fermentation. Lett Appl Microbiol, 19, 12–15.

    Article  CAS  Google Scholar 

  45. Parente, E., & Ricciardi, A. (1999). Production, recovery and purification of bacteriocins from lactic acid bacteria. Appl Microbiol Biotechnol, 52, 628–638.

    Article  CAS  Google Scholar 

  46. Park, Y. W. (2007). Rheological characteristics of goat and sheep milk. Small Ruminant Res, 68, 73–87.

    Article  Google Scholar 

  47. Passerini, D., Beltramo, C., Coddeville, M., Quentin, Y., Ritzenthaler, P., Daveran-Mingot, M. L., & Le Bourgeois, P. (2010). Genes but not genomes reveal bacterial domestication of Lactococcus Lactis. PLoS ONE, 5, 1–12.

    Article  Google Scholar 

  48. Perin, L. M., Miranda, R. O., Camargo, A. C., Colombo, M., Carvalho, A. F., & Nero, L. A. (2013). Antimicrobial activity of the Nisin Z producer Lactococcus lactis subsp. lactis Lc08 against Listeria monocytogenes in skim milk. Arq Bras Med Vet Zootec, 65, 1554–1560.

    Article  CAS  Google Scholar 

  49. Perin, L. M., Moraes, P. M., Viçosa, G. N., Silva, A. J., & Nero, L. A. (2012). Identification of bacteriocinogenic Lactococcus isolates from raw milk and cheese capable of producing nisin A and nisin Z. Int Dairy J, 25, 46–51.

    Article  CAS  Google Scholar 

  50. Perin, L. M. and Nero, L. A. (2014) Antagonistic lactic acid bacteria isolated from goat milk and identification of a novel nisin variant Lactococcus lactis. BMC Microbiol. 14.

  51. Psoni, L., Kotzamanidis, C., Yiangou, M., Tzanetakis, N., & Litopoulou-Tzanetaki, E. (2007). Genotypic and phenotypic diversity of Lactococcus lactis isolates from Batzos, a Greek PDO raw goat milk cheese. Int J Food Microbiol, 114, 211–220.

    Article  CAS  Google Scholar 

  52. Randazzo, C. L., Caggia, C., & Neviani, E. (2009). Application of molecular approaches to study lactic acid bacteria in artisanal cheeses. J Microbiol Meth, 78, 1–9.

    Article  CAS  Google Scholar 

  53. Rehaiem, A., Martinez, B., Manai, M., & Rodriguez, A. (2010). Production of enterocin A by Enterococcus faecium MMRA isolated from 'Rayeb', a traditional Tunisian dairy beverage. J Appl Microbiol, 108, 1685–1693.

    Article  CAS  Google Scholar 

  54. Rodriguez, E., Gonzalez, B., Gaya, P., Nunez, M., & Medina, M. (2000). Diversity of bacteriocins produced by lactic acid bacteria isolated from raw milk. Int Dairy J, 10, 7–15.

    Article  CAS  Google Scholar 

  55. Schirru, S., Todorov, S. D., Favaro, L., Mangia, N. P., Basaglia, M., Casella, S., Comunian, R., Franco, B. D. G. D., & Deiana, P. (2012). Sardinian goat’s milk as source of bacteriocinogenic potential protective cultures. Food Control, 25, 309–320.

    Article  CAS  Google Scholar 

  56. Settanni, L., Guarcello, R., Gaglio, R., Francesca, N., Aleo, A., Felis, G. E., & Moschetti, G. (2014). Production, stability, gene sequencing and in situ anti-Listeria activity of mundticin KS expressed by three Enterococcus mundtii strains. Food Control, 35, 311–322.

    Article  CAS  Google Scholar 

  57. Stenfors, L. P. A., Fagerlund, A., & Granum, P. E. (2008). From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol Rev, 32, 579–606.

    Article  Google Scholar 

  58. Stern, N. J., Svetoch, E. A., Eruslanov, B. V., Perelygin, V. V., Mitsevich, E. V., Mitsevich, I. P., Pokhilenko, V. D., Levchuk, V. P., Svetoch, O. E., & Seal, B. S. (2006). Isolation of a Lactobacillus salivarius strain and purification of its bacteriocin, which is inhibitory to Campylobacter jejuni in the chicken gastrointestinal system. Antimicrob Agents Ch, 50, 3111–3116.

    Article  CAS  Google Scholar 

  59. Strompfová, V., & Lauková, A. (2007). In vitro study on bacteriocin production of Enterococci associated with chickens. Anaerobe, 13, 228–237.

    Article  Google Scholar 

  60. Todorov, S. D. (2008). Bacteriocin production by Lactobacillus plantarum AMA-K isolated from Amasi, a Zimbabwean fermented milk product and study of the adsorption of bacteriocin AMA-K to Listeria sp. Braz J Microbiol, 39, 178–187.

    Article  Google Scholar 

  61. Todorov, S. D., & Dicks, L. M. T. (2009). Bacteriocin production by Pediococcus pentosaceus isolated from marula (Scerocarya birrea). Int J Food Microbiol, 132, 117–126.

    Article  CAS  Google Scholar 

  62. Todorov, S. D., & Dicks, L. M. T. (2009). Effect of modified MRS medium on production and purification of antimicrobial peptide ST4SA produced by Enterococcus mundtii. Anaerobe, 15, 65–73.

    Article  CAS  Google Scholar 

  63. Todorov, S. D., Wachsman, M., Tome, E., Dousset, X., Destro, M. T., Dicks, L. M., Franco, B. D., Vaz-Velho, M., & Drider, D. (2010). Characterisation of an antiviral pediocin-like bacteriocin produced by Enterococcus faecium. Food Microbiol, 27, 869–879.

    Article  CAS  Google Scholar 

  64. Turabelidze, D., Kotetishvili, M., Kreger, A., Morris, J. G., & Sulakvelidze, A. (2000). Improved pulsed-field gel electrophoresis for typing vancomycin-resistant enterococci. J Clin Microbiol, 38, 4242–4245.

    CAS  Google Scholar 

  65. Viçosa, G. N., Moraes, P. M., Yamazi, A. K., & Nero, L. A. (2010). Enumeration of coagulase and thermonuclease-positive Staphylococcus spp. in raw milk and fresh soft cheese: An evaluation of Baird-Parker agar, Rabbit Plasma Fibrinogen agar and the Petrifilm™ Staph Express count system. Food Microbiol, 27, 447–452.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to CNPq, CAPES, FAPESP, and FAPEMIG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luís Augusto Nero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cavicchioli, V.Q., Dornellas, W.d.S., Perin, L.M. et al. Genetic Diversity and Some Aspects of Antimicrobial Activity of Lactic Acid Bacteria Isolated from Goat Milk. Appl Biochem Biotechnol 175, 2806–2822 (2015). https://doi.org/10.1007/s12010-015-1511-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1511-8

Keywords

Navigation