Skip to main content
Log in

Theoretical study on the Cs/Cs-O adsorbed graphene/semiconductor heterojunction anode for thermionic converters

  • Article
  • Published:
Waste Disposal & Sustainable Energy Aims and scope Submit manuscript

Abstract

Graphene/semiconductor heterojunction anodes can significantly enhance the output voltage by the photovoltaic effect. However, a significant challenge arises from the high intrinsic work function of heterojunction surfaces, which limits efficient electron emission. In this study, we explored the potential of low work function materials modified by Cs/Cs-O adsorption as anodes for thermionic (TI) converters through first principles calculations. The results demonstrate that the work functions of the graphene/MoS2 and the graphene/n-type Si surfaces with only Cs coating can decrease to 1.48 eV and 2.46 eV, respectively. The multiple Cs-O atoms co-adsorption enhances the dipole moment, resulting in a further reduction of the work function of the graphene/MoS2 surface to 1.25 eV. In addition, the impact of work function on the performance of TI converters is revealed by using concentrated solar energy as heat source. The highest conversion efficiency achieves 15.25% for the Cs-4O: Gr/MoS2 anode. This study establishes a robust foundation for further advancement of the TI converters with graphene/semiconductor heterojunction anodes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, Gang Xiao, upon reasonable request.

References

  1. Escobar, P.V., Oyarzun, D.I., and Arias, A. 2021. Experimental study of a hybrid solar thermoelectric generator energy conversion system. Energy Conversion and Management 238: 113997. https://doi.org/10.1016/j.enconman.2021.113997.

    Article  CAS  Google Scholar 

  2. Hatsopoulos, G.N., and Kaye, J. 1958. Measured thermal efficiencies of a diode configuration of a thermo electron engine. Journal of Applied Physics 29: 1124–1125. https://doi.org/10.1063/1.1723373.

    Article  Google Scholar 

  3. Omair, Z., Scranton, G., Pazos-Outón, L.M., et al. 2019. Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering. Proceedings of the National Academy of Sciences USA 116: 15356–15361. https://doi.org/10.1073/pnas.1903001116.

    Article  CAS  Google Scholar 

  4. Schwede, J.W., Sarmiento, T., Narasimhan, V.K., et al. 2013. Photon-enhanced thermionic emission from heterostructures with low interface recombination. Nature Communications 4: 1576. https://doi.org/10.1038/ncomms2577.

    Article  CAS  Google Scholar 

  5. Deng, Y., Qiu, B., Lu, K., et al. 2020. Performance evaluation and efficiency enhancement of a space thermionic fuel element for thermal energy conversion and utilization. Applied Thermal Engineering 173: 115237. https://doi.org/10.1016/j.applthermaleng.2020.115237.

    Article  Google Scholar 

  6. Datas, A., Ramos, A., Martí, A., et al. 2016. Ultra high temperature latent heat energy storage and thermophotovoltaic energy conversion. Energy 107: 542–549. https://doi.org/10.1016/j.energy.2016.04.048.

    Article  CAS  Google Scholar 

  7. Qiu, H., Xu, H., Ni, M., et al. 2022. Photo-thermo-electric modeling of photon-enhanced thermionic emission with concentrated solar power. Solar Energy Materials and Solar Cells 246: 111922. https://doi.org/10.1016/j.solmat.2022.111922.

    Article  CAS  Google Scholar 

  8. Prasad, A., Verma, J., Suresh, S., et al. 2022. Recent advancements in the applicability of SnO2-based photo-catalysts for hydrogen production: Challenges and solutions. Waste Disposal Sustainable Energy 4: 179–192. https://doi.org/10.1007/s42768-022-00105-3.

    Article  Google Scholar 

  9. Yuan, H., Riley, D.C., Shen, Z.-X., et al. 2017. Back-gated graphene anode for more efficient thermionic energy converters. Nano Energy 32: 67–72. https://doi.org/10.1016/j.nanoen.2016.12.027.

    Article  CAS  Google Scholar 

  10. Jacobs, R., Morgan, D., and Booske, J. 2017. Work function and surface stability of tungsten-based thermionic electron emission cathodes. APL Materials 5: 116105. https://doi.org/10.1063/1.5006029.

    Article  CAS  Google Scholar 

  11. Yuan, H., Chang, S., Bargatin, I., et al. 2015. Engineering ultra-low work function of graphene. Nano Letters 15: 6475–6480. https://doi.org/10.1021/acs.nanolett.5b01916.

    Article  CAS  Google Scholar 

  12. Su, C.Y., Spicer, W.E., and Lindau, I. 1983. Photoelectron spectroscopic determination of the structure of (Cs, O) activated GaAs (110) surfaces. Journal of Applied Physics 54: 1413–1422. https://doi.org/10.1063/1.332166.

    Article  CAS  Google Scholar 

  13. Liu, Z., Sun, Y., Peterson, S., et al. 2008. Photoemission study of Cs–NF3 activated GaAs(100) negative electron affinity photocathodes. Applied Physics Letters 92: 241107. https://doi.org/10.1063/1.2945276.

    Article  CAS  Google Scholar 

  14. Koeck, F.A.M., and Nemanich, R.J. 2017. Advances in thermionic energy conversion through single-crystal n-type diamond. Frontiers of Mechanical Engineering 3: 19. https://doi.org/10.3389/fmech.2017.00019.

    Article  Google Scholar 

  15. Liu, L., Diao, Y., and Xia, S. 2020. Exploring the n-GaN films with Cs coating surface for low work function solar cell anode. Solar Energy 211: 560–568. https://doi.org/10.1016/j.solener.2020.10.002.

    Article  CAS  Google Scholar 

  16. Liu, L., and Diao, Y. 2021. Exploring the electronic properties of Si-doped AlN (0001) surface with Cs adsorption layer for solar cell anode applications. Materials Science in Semiconductor Processing 132: 105899. https://doi.org/10.1016/j.mssp.2021.105899.

    Article  CAS  Google Scholar 

  17. Fisher, D.G. 1974. The effect of Cs-O activation temperature on the surface escape probability of NEA (In, Ga)As photocathodes. IEEE Transactions on Electron Devices 21: 541–542. https://doi.org/10.1109/T-ED.1974.17963.

    Article  Google Scholar 

  18. Zhuravlev, A.G., Khoroshilov, V.S., and Alperovich, V.L. 2019. Electron emission from GaAs(Cs, O): Transition from negative to positive effective affinity. Applied Surface Science 483: 895–900. https://doi.org/10.1016/j.apsusc.2019.04.010.

    Article  CAS  Google Scholar 

  19. Li, S., Zhang, Y., Zhang, K., et al. 2022. Comparison of activation behavior of Cs-O and Cs-NF3-adsorbed GaAs(100)-β2(2×4) surface: From DFT simulation to experiment. Journal of Colloid and Interface Science 613: 117–125. https://doi.org/10.1016/j.jcis.2022.01.013.

    Article  CAS  Google Scholar 

  20. Zhang, J., Zhang, Y., Qian, Y., et al. 2021. First-principles investigation of Cs-NF3 co-adsorption on GaAs(100)-β2(2×4) surface. Applied Surface Science 535: 147691. https://doi.org/10.1016/j.apsusc.2020.147691.

    Article  CAS  Google Scholar 

  21. Lv, Y., Yu, X., Tan, C., et al. 2011. Deposition temperature effects on tungsten single-crystal layer by chemical vapor transport. Journal of Crystal Growth 329: 62–66. https://doi.org/10.1016/j.jcrysgro.2011.06.040.

    Article  CAS  Google Scholar 

  22. Kobyakov, V.P., and Kalandarishvili, A.G. 2004. Performance of thermionic energy converters with oxygen-containing emitter and collector. Technical Physics 49: 775–778. https://doi.org/10.1134/1.1767890.

    Article  CAS  Google Scholar 

  23. Datas, A. 2016. Hybrid thermionic-photovoltaic converter. Applied Physics Letters 108: 143503. https://doi.org/10.1063/1.4945712.

    Article  CAS  Google Scholar 

  24. Bellucci, A., Mastellone, M., Serpente, V., et al. 2020. Photovoltaic anodes for enhanced thermionic energy conversion. ACS Energy Letters 5: 1364–1370. https://doi.org/10.1021/acsenergylett.0c00022.

    Article  CAS  Google Scholar 

  25. Datas, A., and Vaillon, R. 2019. Thermionic-enhanced near-field thermophotovoltaics. Nano Energy 61: 10–17. https://doi.org/10.1016/j.nanoen.2019.04.039.

    Article  CAS  Google Scholar 

  26. Datas, A., and Vaillon, R. 2019. Thermionic-enhanced near-field thermophotovoltaics for medium-grade heat sources. Applied Physics Letters 114: 133501. https://doi.org/10.1063/1.5078602.

    Article  CAS  Google Scholar 

  27. Sahu, A., Mishra, S., Jain, P., et al. 2023. Plasma cascaded solid wastes for possible adsorption of NO2 in diesel exhaust. Waste Disposal Sustainable Energy 5: 383–393. https://doi.org/10.1007/s42768-023-00158-y.

    Article  Google Scholar 

  28. Kuang, W., Yang, H., Ying, C., et al. 2021. Cost-effective, environmentally-sustainable and scale-up synthesis of vertically oriented graphenes from waste oil and its supercapacitor applications. Waste Disposal Sustainable Energy 3: 31–39. https://doi.org/10.1007/s42768-020-00068-3.

    Article  Google Scholar 

  29. Hackley, J., Ali, D., DiPasquale, J., et al. 2009. Graphitic carbon growth on Si(111) using solid source molecular beam epitaxy. Applied Physics Letters 95: 133114. https://doi.org/10.1063/1.3242029.

    Article  CAS  Google Scholar 

  30. Dang, X., Dong, H., Wang, L., et al. 2015. Semiconducting graphene on silicon from first-principles calculations. ACS Nano 9: 8562–8568. https://doi.org/10.1021/acsnano.5b03722.

    Article  CAS  Google Scholar 

  31. Xu, Y., He, K.T., Schmucker, S.W., et al. 2011. Inducing electronic changes in graphene through silicon (100) substrate modification. Nano Letters 11: 2735–2742. https://doi.org/10.1021/nl201022t.

    Article  CAS  Google Scholar 

  32. Hu, C., Liang, T., Chen, X., et al. 2021. Graphene-anode thermionic converter demonstrating total photon reflection. Applied Physics Letters 118: 083901. https://doi.org/10.1063/5.0039113.

    Article  CAS  Google Scholar 

  33. Qiu, H., Lin, S., Xu, H., et al. 2022. Hybrid thermionic-photovoltaic converter with graphene-on-semiconductor heterojunction anode for efficient electricity generation. iScience 25: 105051. https://doi.org/10.1016/j.isci.2022.105051.

    Article  CAS  Google Scholar 

  34. Li, W., Peng, W., Yang, Z., et al. 2020. Performance improvements and parametric design strategies of an updated thermionic-photovoltaic converter. Physica Scripta 95: 035208. https://doi.org/10.1088/1402-4896/ab501e.

    Article  CAS  Google Scholar 

  35. Qiu, H., Lin, S., Xu, H., et al. 2023. Experimental and theoretical study on hybrid thermionic-photovoltaic energy converters with graphene/semiconductor Schottky junction. Energy Conversion and Management 276: 116584. https://doi.org/10.1016/j.enconman.2022.116584.

    Article  CAS  Google Scholar 

  36. Wu, Y., Lin, Y., Bol, A.A., et al. 2011. High-frequency, scaled graphene transistors on diamond-like carbon. Nature 472: 74–78. https://doi.org/10.1038/nature09979.

    Article  CAS  Google Scholar 

  37. Roy, K., Padmanabhan, M., Goswami, S., et al. 2013. Graphene–MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nature Nanotech 8: 826–830. https://doi.org/10.1038/nnano.2013.206.

    Article  CAS  Google Scholar 

  38. Bediako, D.K., Rezaee, M., Yoo, H., et al. 2018. Heterointerface effects in the electrointercalation of van der Waals heterostructures. Nature 558: 425–429. https://doi.org/10.1038/s41586-018-0205-0.

    Article  CAS  Google Scholar 

  39. Ma, Y., Dai, Y., Guo, M., et al. 2011. Graphene adhesion on MoS2 monolayer: An ab initio study. Nanoscale 3: 3883. https://doi.org/10.1039/c1nr10577a.

    Article  CAS  Google Scholar 

  40. Fang, Q., Li, M., Zhao, X., et al. 2022. van der Waals graphene/MoS2 heterostructures: Tuning the electronic properties and Schottky barrier by applying a biaxial strain. Materials Advances 3: 624–631. https://doi.org/10.1039/D1MA00806D.

    Article  CAS  Google Scholar 

  41. Shi, J., Chen, L., Yang, M., et al. 2022. Interface contact and modulated electronic properties by external vertical strains and electric fields in graphene/MoS2 heterostructure. Current Applied Physics 39: 331–338. https://doi.org/10.1016/j.cap.2022.06.002.

    Article  Google Scholar 

  42. Clark, S.J., Segall, M.D., Pickard, C.J., et al. 2005. First principles methods using CASTEP. Zeitschrift Für Kristallographie - Crystalline Materials 220: 567–570. https://doi.org/10.1524/zkri.220.5.567.65075.

    Article  CAS  Google Scholar 

  43. Perdew, J.P., Burke, K., and Ernzerhof, M. 1996. Generalized gradient approximation made simple. Physical Review Letters 77: 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865.

    Article  CAS  Google Scholar 

  44. Kitchin, J.R. 2009. Correlations in coverage-dependent atomic adsorption energies on Pd(111). Physical Review B 79: 205412. https://doi.org/10.1103/PhysRevB.79.205412.

    Article  CAS  Google Scholar 

  45. Kamaratos, M. 2001. Adsorption kinetics of the Cs–O activation layer on GaAs(100). Applied Surface Science 185: 66–71. https://doi.org/10.1016/S0169-4332(01)00584-0.

    Article  CAS  Google Scholar 

  46. Hogan, C., Paget, D., Garreau, Y., et al. 2003. Early stages of cesium adsorption on the As-rich c (2×8) reconstruction of GaAs(001): Adsorption sites and Cs-induced chemical bonds. Physical Review B 68: 205313. https://doi.org/10.1103/PhysRevB.68.205313.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 52325605), the Zhejiang Provincial Natural Science Foundation (No. LR20E060001) and the Fundamental Research Funds for the Central Universities (No. 2022ZFJH004).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Weiting Sun: Conceptualization, Methodology, Investigation, Software, Validation, Formal analysis, Visualization, Data curation, Writing-original draft, Writing-review & editing. Haoran Xu: Writing-review & editing. Hao Qiu: Writing-review & editing. Gang Xiao: Supervision, Funding acquisition, Project administration.

Corresponding author

Correspondence to Gang Xiao.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2661 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, W., Xu, H., Qiu, H. et al. Theoretical study on the Cs/Cs-O adsorbed graphene/semiconductor heterojunction anode for thermionic converters. Waste Dispos. Sustain. Energy (2024). https://doi.org/10.1007/s42768-024-00191-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42768-024-00191-5

Keywords

Navigation