Skip to main content
Log in

Utilisation of heat-treated single-layer graphene as an electrode for hybrid solar cell applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

There has been tremendous research progress among scientists in the development of hybrid solar cells (HSC) as green solar energy. The research aims to investigate the influence of several types of transparent conductive electrodes on the performance of fabricated HSC. Single-layer graphene (SG)-based film has been identified as a potential replacement for indium tin oxide (ITO)-based film as anode transparent conductive layer (ATCL) in HSC. In this work, we have fabricated ITO-based HSC (ISc), SG-based HSC (GSc), and heat-treated SG-based HSC (HGSc). It was observed that the power conversion efficiency (PCE) was significantly dependent on the types of ATCL. These significant findings are measured by Raman spectroscopy, a UV–Vis spectrophotometer, and a solar simulator. The HGSc possesses the best PCE of 1.960%, compared to 1.225% in the ISc, with an open-circuit voltage (Voc) of 0.5 V, a short-circuit photocurrent density (Jsc) of 11.2 mAcm−2, and a fill factor (FF) of 0.35. The properties of heat-treated SG-based film were significantly attributed to PCE enhancement in HSC. As a conclusion, the use of graphene-based film has opened up a new research interest in the solar cell fabrication process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Author contributions

All authors contributed to the study conception and design, as stated in the following: conceptualisation and supervision: MFM and MR. Methodology: MSS and MFM. Formal analysis and investigation: MSS and MFM. Resources: MFM, ABS and SMS. Writing-original draft: MSS and MFM. Writing-review and editing: MSS, MFM, ABS, SMS and MR. Project administration: MFM and ABS. Prior to the submission, all authors have read and approved the final manuscript.

Data availability

Data will be made available on request.

References

  1. P.R. Wallace, The band theory of graphite. Phys. Rev. 71, 622–634 (1947)

    ADS  Google Scholar 

  2. K. Novoselov, A. Geim, S. Morozov et al., Science 306, 666 (2004)

    ADS  Google Scholar 

  3. P. Avouris, Z. Chen, V. Perebeinos, Carbon-based electronics. Nat. Immunol. 2, 605–615 (2007)

    Google Scholar 

  4. P.A. Denis, F. Iribarne, Comparative study of defect reactivity in graphene. J. Phys. Chem. C 117(37), 19048–19055 (2013)

    Google Scholar 

  5. A.A. Balandin, S. Ghosh, W. Bao et al., Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008)

    ADS  Google Scholar 

  6. E. Stolyarova, K.T. Rim, S. Ryu et al., High-resolution scanning tunneling microscopyimaging of mesoscopic graphene sheets on an insulating surface. Proc. Natl. Acad. Sci. U.S.A. 104(22), 9209–9212 (2007)

    ADS  Google Scholar 

  7. R.R. Nair, P. Blake, A.N. Grigorenko et al., Fine structure constant defines visual transparency of graphene. Science 320(5881), 1308 (2008)

    ADS  Google Scholar 

  8. F. Giannazzo, I. Deretzis, A. La Magna et al., Electronic transport at monolayer-bilayer junctions in epitaxial graphene on SiC. Phys. Rev. B 86, 235422 (2012)

    ADS  Google Scholar 

  9. I.V. Gornyi, V.Y. Kachorovskii, A.D. Mirlin, Conductivity of suspended graphene at the Dirac point. Phys. Rev. B 86, 165413 (2012)

    ADS  Google Scholar 

  10. J.H. Chen, C. Jang, S. Xiao et al., Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol.Nanotechnol. 3, 206–209 (2008)

    Google Scholar 

  11. A. Akturk, N. Goldsman, Electron transport and full-band electron-phonon interactions in graphene. J. Appl. Phys. 103, 053702 (2008)

    ADS  Google Scholar 

  12. F. Bonaccorso, L. Colombo, G. Yu, Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347, 6217 (2015)

    Google Scholar 

  13. P. Soukiassian, Will graphene be the material of the 21st century? MRS Bull. 37(12), 1321 (2012)

    Google Scholar 

  14. E. Becquerel, Mémoire sur les effets électriques produits sous l’influence des rayons solaires. Compt. Rend. Acad. Sci. 9, 561–567 (1839)

    Google Scholar 

  15. Y. Sun, W. Zhang, H.J. Chi et al., Recent development of graphene materials applied in polymer solar cell. Renew. Sustain. Energy Rev. 43, 973–980 (2015)

    Google Scholar 

  16. Z. Zhang, L. Wei, X. Qin et al., Carbon nanomaterials for photovoltaic process. Nano Energy 15, 490–522 (2015)

    Google Scholar 

  17. S.H. Kim, Y.J. Noh, S.N. Kwon et al., Efficient modification of transparent graphene electrodes by electron beam irradiation for organic solar cells. J. Ind. Eng. Chem. 26, 210–213 (2015)

    Google Scholar 

  18. G.S. Selopal, R. Milan, L. Ortolani et al., Graphene as transparent front contact for dye sensitized solar cells. Sol. Energy Mater. Sol. Cells 135, 99–105 (2015)

    Google Scholar 

  19. X. Wang, L. Zhi, K. Mullen, Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8(1), 323–327 (2008)

    ADS  Google Scholar 

  20. V.C. Tung, L.M. Chen, M.J. Allen et al., Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors. Nano Lett. 9(5), 1949–1955 (2009)

    ADS  Google Scholar 

  21. G. Eda, Y.Y. Lin, S. Miller et al., Transparent and conducting electrodes for organic electronics from reduced graphene oxide. Appl. Phys. Lett. 92, 233305 (2008)

    ADS  Google Scholar 

  22. J. Wu, H.A. Becerril, Z. Bao et al., Organic solar cells with solution-processed graphene transparent electrodes. Appl. Phys. Lett. 92, 263302 (2008)

    ADS  Google Scholar 

  23. X. Wang, L. Zhi, N. Tsao et al., Transparent carbon films as electrodes in organic solar cells. Angew. Chem. Int. Ed.. Chem. Int. Ed. 47(16), 2990–2992 (2008)

    Google Scholar 

  24. B. Szyszka, P. Loebmannb, A. Georg et al., Development of new transparent conductors and device applications utilizing a multidisciplinary approach. Thin Solid Film 518(11), 3109–3114 (2010)

    ADS  Google Scholar 

  25. C.G. Granqvist, Transparent conductors as solar energy materials: a panoramic review. Sol. Energy Mater. Sol. Cells 91(17), 1529–1598 (2007)

    Google Scholar 

  26. M.F. Malek, M.Z. Sahdan, M.H. Mamat et al., A novel fabrication of MEH-PPV/Al:ZnO nanorod arrays based ordered bulk heterojunction hybrid solar cells. Appl. Surf. Sci. 275, 75–83 (2013)

    ADS  Google Scholar 

  27. M.Z. Sahdan, M.F. Malek, M.S. Alias et al., Fabrication of inverted bulk heterojunction organic solar cells based on conjugated P3HT:PCBM using various thicknesses of ZnO buffer layer. Optik 126(6), 645–648 (2015)

    ADS  Google Scholar 

  28. L.W. Schwartz, R.V. Roy, Theoretical and numerical results for spin coating of viscous liquids. Phys. Fluids 16(3), 569–584 (2004)

    ADS  MathSciNet  Google Scholar 

  29. Solar cell woes. Nat. Photon. 8, 665 (2014). https://doi.org/10.1038/nphoton.2014.212

  30. R.C. Willson, New radiometric techniques and solar constant measurements. Sol. Energ. 14(2), 203–211 (1973)

    ADS  Google Scholar 

  31. Z.J. Lapin, R. Beams, L.G. Cançado et al., Near-field Raman spectroscopy of nanocarbon materials. Faraday Discuss. (2015). https://doi.org/10.1039/C5FD0050E

    Article  Google Scholar 

  32. T.L. Vasconcelos, B.S. Archanjo, B. Fragneaud et al., Tuning localized surface plasmon resonance in scanning near-field optical microscopy probes. ACS Nano (2015). https://doi.org/10.1021/acsnano.5b01794

    Article  Google Scholar 

  33. F.D. Heinz, W. Warta, M.C. Schubert, Optimizing micro Raman and PL Spectroscopy for solar cell technological assessment. Ener. Proc. 27, 208–211 (2012)

    Google Scholar 

  34. A. Jorio, L.G. Cançado, Perspectives on Raman spectroscopy of graphene-based systems: from perfect two-dimensional surface to charcoal. Phys. Chem. Chem. Phys. 14(44), 15246–15256 (2012)

    Google Scholar 

  35. M.S. Dresselhaus, A. Jario, L.G. Cançado et al., “Raman spectroscopy: characterization of edges, defects, and the fermi energy of graphene and sp2 carbons, in Graphene nanoelectronics. (Springer, Berlin Heidelberg, 2012), pp.15–55

    Google Scholar 

  36. V. Carozo, C.M. Almeida, E.H.M. Ferreira et al., Raman signature of graphene superlattices. Nano Lett. 11(11), 4527–4534 (2011)

    ADS  Google Scholar 

  37. L.G. Cançado, A. Jorio, M.A. Pimenta, Measuring the absolute Raman cross section of nanographites as a function of laser energy and crystallite size. Phys. Rev. B 76, 064304 (2007). https://doi.org/10.1103/PhysRevB.76.064304

    Article  ADS  Google Scholar 

  38. K. Sato, R. Saito, Y. Oyama, D-band Raman intensity of graphitic materials as a function of laser energy and crystallite size. Chem. Phys. Lett. 427(1–3), 117–121 (2006)

    ADS  Google Scholar 

  39. A. Grüneis, R. Saito, J. Jiang et al., Electron-phonon interaction and Raman intensities in graphite. AIP Conf. Proc. 732, 372 (2004). https://doi.org/10.1063/1.1812110

    Article  ADS  Google Scholar 

  40. M.A. Pimenta, A. Jorio, M.S.S. Dantas et al., Resonance Raman scattering in carbon nanotubes and nanographites. AIP Conf. Proc. 685, 219 (2003). https://doi.org/10.1063/1.1628022

    Article  ADS  Google Scholar 

  41. L.G. Cançado, M.A. Pimenta, R. Saito et al., Stokes and anti-Stokes double resonance Raman scattering in two-dimensional graphite. Phys. Rev. B 66, 035415 (2012). https://doi.org/10.1103/PhysRevB.66.035415

    Article  ADS  Google Scholar 

  42. A. Grüneis, R. Saito, T. Kimura et al., Determination of two-dimensional phonon dispersion relation of graphite by Raman spectroscopy. Phys. Rev. B 65, 155405 (2002). https://doi.org/10.1103/PhysRevB.65.155405

    Article  ADS  Google Scholar 

  43. A.C. Ferrari, D.M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol.Nanotechnol. 8, 235–246 (2013)

    ADS  Google Scholar 

  44. S.J.A. Moniz, R.Q. Cabrera, C.S. Blackman et al., A simple, low-cost CVD route to thin films of BiFeO3 for efficient water photo-oxidation. J. Mat. Chem A 2, 2922–2927 (2014)

    Google Scholar 

  45. Y.T. Shih, C.Y. Chiu, C.W. Chang et al., Stimulated emission in highly (0001)-oriented ZnO films grown by atomic layer deposition on the amorphous glass substrates. J. Electrochem. Soc.Electrochem. Soc. 157(9), H879–H883 (2010)

    Google Scholar 

  46. U. Eppelt, S Russ C. Hartmann et al., “Diagnostic and simulation of ps-laser glass cutting,” 31st International Congress on Applications of Lasers & Electro-Optics (ICALEO 2012), 10 (2012)

  47. L.G. Cançado, A. Reina, J. Kong et al., Geometrical approach for the study of G′ band in the Raman spectrum of monolayer graphene, bilayer graphene, and bulk graphite. Phys. Rev. B 77, 245408 (2008). https://doi.org/10.1103/PhysRevB.77.245408

    Article  ADS  Google Scholar 

  48. L.G. Cançado, K. Takai, T. Enoki et al., Measuring the degree of stacking order in graphite by Raman spectroscopy. Carbon 46(2), 272–275 (2008)

    Google Scholar 

  49. L.G. Cançado, A. Jorio, E.H.M. Ferreira et al., Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 11(8), 3190–3196 (2011)

    ADS  Google Scholar 

  50. R. Beams, L.G. Cançado, L. Novotny, Low temperature Raman study of the electron coherence length near graphene edges. Nano Lett. 11(3), 1177–1181 (2011)

    ADS  Google Scholar 

  51. R. Beams, L. G. Cançado, L. Novotny, “Optical measurement of the phase-breaking length in graphene,” Proceedings Frontiers in Optics 2010/Laser Science XXVI. doi:https://doi.org/10.1364/LS.2010.LMB4

  52. A. Jario, L.G. Cançado, E.H.M. Ferreira et al., Raman spectroscopy to study disorder and perturbations in sp2 nano-carbons. AIP Conf. Proc. 1267, 192 (2010). https://doi.org/10.1063/1.3482461

    Article  ADS  Google Scholar 

  53. M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus et al., Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 9, 1276–1291 (2007)

    Google Scholar 

  54. L.G. Cançado, K. Takai, T. Enoki et al., General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Appl. Phys. Lett. 88, 163106 (2006)

    ADS  Google Scholar 

  55. L.C. Chen, T.Y. Wang, J.R. Yang et al., Growth, characterization, optical and X-ray absorption studies of nano-crystalline diamond films. Diam. Relat. Mater.Relat. Mater. (2000). https://doi.org/10.1016/S0925-9635(99)00355-6

    Article  Google Scholar 

  56. D.L. Duong, G.H. Han, S.M. Lee et al., Probing graphene grain boundaries with optical microscopy. Nature 490, 235–239 (2012)

    ADS  Google Scholar 

  57. W. Wu, Q. Yu, P. Peng et al., Control of thickness uniformity and grain size in graphene films for transparent conductive electrodes. Nanotechnology 23(3), 035603 (2012)

    ADS  Google Scholar 

  58. P.H. Joshi, D.P. Korfiatis, S.F. Potamianou et al., Oxide thickness and roughness factor as paramters for TiO2-dye sensitized solar cells performance. Russ. J. Electrochem.Electrochem. 47(5), 517–521 (2011)

    Google Scholar 

  59. D.N. Kouvatnos, A.T. Voutsas, M.K. Hatalis, High-performance thin film transistors in large grain size polysilicon deposited by thermal decomposition of disilane. IEEE Trans. Electron Devices 43(9), 1399–1406 (1996)

    ADS  Google Scholar 

  60. A.B. Suriani, M.D. Nurhafizah, A. Mohamed et al., A facile one-step method for graphene oxide/natural rubber latex nanocomposite production for supercapacitor applications. Mater. Lett. 161, 665–668 (2015)

    Google Scholar 

  61. J. Rafiee, M.A. Rafiee, Z.Z. Yu et al., Superhydrophobic to superhydrophilic wetting control in graphene films. Adv. Mater. 22, 2151–2154 (2010)

    Google Scholar 

  62. N.A. Patankar, On the modeling of hydrophobic contact angles on rough surfaces. Langmuir 19(4), 1249–1253 (2007)

    MathSciNet  Google Scholar 

  63. Z. Wang, N. Koratkar, L. Ci et al., Combined micro-/nanoscale surface roughness for enhanced hydrophobic stability in carbon nanotube arrays. Appl. Phys. Lett. 90, 143117 (2007)

    ADS  Google Scholar 

  64. L. Zhu, Y. Xiu, J. Xu et al., Superhydrophobicity on two-tier rough surfaces fabricated by controlled growth of aligned carbon nanotube arrays coated with fluorocarbon. Langmuir 21(24), 11208–11212 (2005)

    Google Scholar 

  65. C.J. Shih, Q.H. Wang, S. Lin et al., Breakdown in the wetting transparency of graphene. Phys. Rev. Lett. 109, 176101 (2012)

    ADS  Google Scholar 

  66. F. Taherian, V. Marcon, N.F.A. van der Vegt et al., What is the contact angle of water on graphene. Langmuir 29(5), 1457–1465 (2013)

    Google Scholar 

  67. J. Rafiee, X. Mi, H. Gullapalli et al., Wetting transparency of graphene. Nat. Mater. 11, 217–222 (2012)

    ADS  Google Scholar 

  68. Z. Li, Y. Wang, A. Kozbial et al., Effect of airborne contaminants on the wettability of supported graphene and graphite. Nat. Mater. 12, 925–931 (2013)

    ADS  Google Scholar 

  69. M. Munz, C.E. Giusca, R.L. Myers-Ward et al., Thickness-dependent hydrophobicity of epitaxial graphene. ACS Nano 9(8), 8401–8411 (2015)

    Google Scholar 

  70. W. Nie, H. Tsai, R. Asadpour et al., High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347, 522–525 (2015)

    ADS  Google Scholar 

  71. X. Zhu, W.C.H. Choy, F. Xie et al., A study of optical properties enhancement in low-bandgap polymer solar cells with embedded PEDOT:PSS gratings. Sol. Energ Mat. C. 99, 327–332 (2012)

    Google Scholar 

  72. S. Ulum, N. Holmes, D. Darwis et al., Determining the structural motif of P3HT: PCBM nanoparticulate organic photovoltaic devices. Sol. Energ Mat. Sol. C. 110, 43–48 (2013)

    Google Scholar 

  73. A. Welte, C. Waldauf, C. Brabec et al., Application of optical absorbance for the investigation of electronic and structural properties of sol–gel processed TiO2 films. Thin Solid Films 516(20), 7256–7259 (2008)

    ADS  Google Scholar 

  74. H. Hoppe, N.S. Sariciftci, Organic solar cells: an overview. J. Mat. Res. 19(7), 1924–1945 (2004)

    ADS  Google Scholar 

  75. J. Rostalskia, D. Meissner, Photocurrent spectroscopy for the investigation of charge carrier generation and transport mechanisms in organic p/n-junction solar cells. Sol. Energ. Mat. Sol. C. 63(1), 34–47 (2000)

    Google Scholar 

  76. M.H. Abdullah, L.N. Ismail, M.H. Mamat et al., Novel encapsulated ITO/arc-ZnO:TiO2 antireflactive passivating layer for TCO conducting substrate prepared by simultaneous radio frequency-magnetron sputtering. Microelectron. Eng. 108, 138–104 (2013)

    Google Scholar 

  77. M.H. Abdullah, M. Rusop, Improved performance of dye-sesitized solar cell with a speacially tailored TiO2 compact layer prepared by RF magnetron sputtering. J. Alloy. Compd. 600, 60–66 (2014)

    Google Scholar 

  78. M.H. Abdullah, M. Rusop, Novel ITO/arc-TiO2 antireflective conductive substrate for transmittance enhanced properties in dye-sensitized solar cells. Microelectron. Eng. 108, 99–105 (2013)

    Google Scholar 

  79. M.H. Abdullah, M. Rusop, RF sputtered tri-functional antireflective TiO2 (arc-TiO2) compact layer for performance enhancement in dye-sensitised solar cell. Ceram. Int. 40, 967–974 (2014)

    Google Scholar 

  80. H. Kim, K. Lee, Role of interpenetrating networks in the device performance of polymer-fullerene photovoltaic cells. J. Korean Phys. Soc. 42(1), 183–186 (2003)

    Google Scholar 

  81. G.X.R. Smith, R. Crook, J.D. Wadhawan, Measuring the work function of TiO2 nanotubes using illuminated electrostatic force microscopy. J. Phys. Conf. Ser. (2013). https://doi.org/10.1088/1742-6596/471/1/012045

    Article  Google Scholar 

  82. J.S. Kim, B. Lägel, E. Moons et al., Kelvin probe and ultraviolet photoemission measurements of indium tin oxide work function: a comparison. Synthetic Metal. 111–112, 311–314 (2000)

    Google Scholar 

  83. V. Panchal, T. L. Burnett, R. Pearce et al, “Surface potential variations in epitaxial graphene devices investigated by electrostatic force spectroscopy,” 12th IEEE Conference on Nanotechnology (IEEE-NANO), pp 1–5, 2012.

  84. O. Kazakova, V. Panchal, T.L. Burnett, Epitaxial graphene and graphene–based devices studied by electrical scanning probe microscopy. Crystals 3(1), 191–233 (2013)

    Google Scholar 

  85. N. Koch, A. Elschner, J. Schwartz et al., Organic molecular films on gold versus conducting polymer: Influence of injection barrier height and morphology on current–voltage characteristics. Appl. Phys. Lett. (2003). https://doi.org/10.1063/1.1565506

    Article  Google Scholar 

  86. H.H. Malitson, The solar electromagnetic radiation environment. Sol. Energ. 12(2), 197–203 (1968)

    ADS  Google Scholar 

  87. C.A. Gueymard, The sun’s total and spectral irradiance for solar energy applications and solar radiation models. Sol. Energ. 76(4), 423–453 (2004)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grant nos. 600-RMC/YTR/5/3 (005/2021) and 600-RMC/GIP 5/3 (020/2023). The authors would like to thank the Research Management Centre of the University of Southampton Malaysia, Research Management Centre of the Universiti Teknologi MARA (UiTM) and Ministry of Higher Education (MoHE), Malaysia for financial support. The IT support service from the iSolutions of the University of Southampton is greatly acknowledged. The authors also thank Mr. Salifairus Mohammad Jafar (UiTM Senior Science Officer), Mr. Mohd Azlan Jaafar (UiTM assistant engineer), Mr. Suhaimi Ahmad (UiTM assistant engineer) and Mr. Muhamad Faizal Abd Halim (Assistant Research Officer) for their kind support on this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Malek.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationship that could have appeared to influence the work reported in this paper.

Ethical approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamsudin, M.S., Malek, M.F., Suriani, A.B. et al. Utilisation of heat-treated single-layer graphene as an electrode for hybrid solar cell applications. Appl. Phys. A 129, 829 (2023). https://doi.org/10.1007/s00339-023-07106-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07106-x

Keywords

Navigation