Skip to main content

Advertisement

Log in

Beneficial use of mussel shell as a bioadditive for TPU green composites by the valorization of an aqueous waste

  • Article
  • Published:
Waste Disposal & Sustainable Energy Aims and scope Submit manuscript

Abstract

Scientific studies have focused on environmentally friendly solutions as effective as the reuse of crop products owing to plastic-waste problems in recent years. This issue is the main driving force for upcoming academic research attempts in waste valorization-related studies. Herein, we integrated an aqua-waste, mussel shell (MS), as a bioadditive form into green thermoplastic polyurethane (TPU) green composites. Tuning of the MS surface was performed to achieve strong adhesion between composite phases. The surface functionalities of MS powders were evaluated via infrared spectroscopy and scanning electron microscopy (SEM) images. Composite samples were prepared by melt-compounding followed by injection molding techniques. It was confirmed by morphological analysis that relatively better adhesion between the phases was achieved for composites involving surface-modified MS compared to unmodified MS. Tensile strength and Young’s modulus of surface-modified MS-filled composites were found to be higher than those of unmodified MS, whereas the elongation at break shifted to lower values with MS inclusions. The shore hardness of TPU was remarkably improved after being incorporated with silane-treated MS (AS-MS). Stearic acid-treated MS (ST-MS) additions resulted in an enhancement in the thermal stability of the composites. Thermo-mechanical analysis showed that the storage moduli of composites were higher than those of unfilled TPU. ST-MS additions led to an increase in the characteristic glass transition temperature of TPU. Melt flow index (MFI) of neat TPU was highly improved after MS loading regardless of modification type. According to the wear test, surface modification of MS displayed a positive effect on the wear resistance of TPU. As the water absorption data of the composites were evaluated, the TPU/AS-MS composite yielded the lowest water absorption. The silane layer on MS inclusion promoted water repellency of composites due to the hydrophobicity of silane. The results of the biodegradation investigation demonstrated that adding unmodified and/or modified MS to the TPU matrix increased the biodegradation rate. The test results at the end of a 7-week period of biodegradation with a soft-rot fungus implied that the composite materials were more biodegradable than pure TPU. Silane modification of MS exhibited better performance in terms of the characterized properties of TPU-based composites.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Acarlı, D., Acarlı, S., and Kale, S. 2022. The struggle for life: Pinna nobilis in the Marmara Sea (Turkey). Thalassas 38: 1199–1212. https://doi.org/10.1007/s41208-022-00470-0.

    Article  Google Scholar 

  2. Gerasimiuk, V.P. 2016. Microscopic algae of Zmiinyi Island (the Black Sea, Ukraine). International Journal on Algae 18 (3): 217–224. https://doi.org/10.1615/InterJAlgae.v18.i3.20.

    Article  Google Scholar 

  3. Govorin, I.A., and Shatsillo, Y.I. 2010. Formation of the filtering potential of the mussel and mytilaster settlements within anthropogenically transformed coastal zone of the Black Sea. Hydrobiological Journal 46 (2): 3–12. https://doi.org/10.1615/HydrobJ.v46.i2.10.

    Article  Google Scholar 

  4. Mititelu, M., Moroșan, E., Nicoară, A.C., et al. 2022. Development of immediate release tablets containing calcium lactate synthetized from Black Sea mussel shells. Marine Drugs 20 (1): 45. https://doi.org/10.3390/md20010045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mol, S., and Alakavuk, D.U. 2011. Heavy metals in mussels (Mytilus galloprovincialis) from Marmara Sea Turkey. Biological Trace Element Research 141: 184–191. https://doi.org/10.1007/s12011-010-8721-2.

    Article  CAS  PubMed  Google Scholar 

  6. Roméo, M., Frasila, C., Gnassia-Barelli, M., et al. 2005. Biomonitoring of trace metals in the Black Sea (Romania) using mussels Mytilus galloprovincialis. Water Research 39 (4): 596–604. https://doi.org/10.1016/j.watres.2004.09.026.

    Article  CAS  PubMed  Google Scholar 

  7. Zakharikhina, L., Rudev, P., and Paltseva, A. 2022. Chemical composition and morphology of the Mediterranean mussel, Black Sea coast of Russia. Marine Pollution Bulletin 179: 113692. https://doi.org/10.1016/j.marpolbul.2022.113692.

    Article  CAS  PubMed  Google Scholar 

  8. Abdur Rahman, M., Haque, S., Athikesavan, M.M., et al. 2023. A review of environmental friendly green composites: Production methods, current progresses, and challenges. Environmental Science and Pollution Research 30: 16905–16929. https://doi.org/10.1007/s11356-022-24879-5.

    Article  CAS  PubMed  Google Scholar 

  9. Das, O., Babu, K., Shanmugam, V., et al. 2022. Natural and industrial wastes for sustainable and renewable polymer composites. Renewable and Sustainable Energy Reviews 158: 112054. https://doi.org/10.1016/j.rser.2021.112054.

    Article  CAS  Google Scholar 

  10. Pandey, P., Dhiman, M., Kansal, A., et al. 2023. Plastic waste management for sustainable environment: Techniques and approaches. Waste Disposal & Sustainable Energy 5: 205–222. https://doi.org/10.1007/s42768-023-00134-6

  11. Dubey, S.C., Mishra, V., and Sharma, A. 2021. A review on polymer composite with waste material as reinforcement. Materials Today Proceedings 47: 2846–2851. https://doi.org/10.1016/j.matpr.2021.03.611.

    Article  CAS  Google Scholar 

  12. Kumar, M.S. 2023. Utilizing bio-waste as the reinforcement particles for the production of sustainable composite brakes and the investigation of its tribological and corrosive performance. Environmental Science and Pollution Research 30: 6935–6949. https://doi.org/10.1007/s11356-022-22397-y.

    Article  CAS  PubMed  Google Scholar 

  13. Madhu, S., Devarajan, Y., and Natrayan, L. 2023. Effective utilization of waste sugarcane bagasse filler-reinforced glass fibre epoxy composites on its mechanical properties—waste to sustainable production. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-023-03792-y.

    Article  Google Scholar 

  14. Mysiukiewicz, O., and Barczewski, M. 2020. Crystallization of polylactide-based green composites filled with oil-rich waste fillers. Journal of Polymer Research 27: 374. https://doi.org/10.1007/s10965-020-02337-5.

    Article  CAS  Google Scholar 

  15. Salasinska, K., Barczewski, M., Górny, R., et al. 2018. Evaluation of highly filled epoxy composites modified with walnut shell waste filler. Polymer Bulletin 75: 2511–2528. https://doi.org/10.1007/s00289-017-2163-3.

    Article  CAS  Google Scholar 

  16. Sismanoglu, S., Tayfun, U., Popescu, C.M., et al. 2023. Effective use of olive pulp as biomass additive for eco-grade TPU-based composites using functional surface modifiers. Biomass Conversion and Biorefinery. 13: 12303–12318. https://doi.org/10.1007/s13399-021-01987-9.

    Article  CAS  Google Scholar 

  17. Cabrera, F.C. 2021. Eco-friendly polymer composites: A review of suitable methods for waste management. Polymer Composites 42 (6): 2653–2677. https://doi.org/10.1002/pc.26033.

    Article  CAS  Google Scholar 

  18. Irsad, T.N., Chauhan, D., Mangalaraja, R.V., et al. 2022. Polymeric Composites: A Promising Tool for Enhancing Photosyntheticy Efficiency of Crops. In Aftab, T. and Hakeem, K.R. eds. Metabolic Engineering in Plants. Springer, Singapore. https://doi.org/10.1007/978-981-16-7262-0_15

  19. Mohite, A.S., Jagtap, A.R., Avhad, M.S., et al. 2022. Recycling of major agriculture crop residues and its application in polymer industry: a review in the context of waste to energy nexus. Energy Nexus 7: 100134. https://doi.org/10.1016/j.nexus.2022.100134.

    Article  CAS  Google Scholar 

  20. Cheng, M., Liu, M., Chang, L., et al. 2023. Overview of structure, function and integrated utilization of marine shell. Science of the Total Environment 870: 161950. https://doi.org/10.1016/j.scitotenv.2023.161950.

    Article  CAS  PubMed  ADS  Google Scholar 

  21. Kaplan, D.L. 1998. Mollusc shell structures: Novel design strategies for synthetic materials. Current Opinion in Solid State and Materials Science 3 (3): 232–236. https://doi.org/10.1016/S1359-0286(98)80096-X.

    Article  CAS  ADS  Google Scholar 

  22. Van der Schatte, O.A., Jones, L., Vay, L.L., et al. 2020. A global review of the ecosystem services provided by bivalve aquaculture. Reviews in Aquaculture 12 (1): 3–25. https://doi.org/10.1111/raq.12301.

    Article  Google Scholar 

  23. Yao, Z.T., Chen, T., Li, H.Y., et al. 2013. Mechanical and thermal properties of polypropylene (PP) composites filled with modified shell waste. Journal of Hazardous Materials 262: 212–217. https://doi.org/10.1016/j.jhazmat.2013.08.062.

    Article  CAS  PubMed  Google Scholar 

  24. Jović, M., Mandić, M., Šljivić-Ivanović, M., et al. 2019. Recent trends in application of shell waste from mariculture. Studia Marina 32 (1): 47–62. https://doi.org/10.5281/zenodo.3274471.

    Article  Google Scholar 

  25. Kwon, H.B., Lee, C.W., Jun, B.S., et al. 2004. Recycling waste oyster shells for eutrophication control. Resources, Conservation and Recycling 41 (1): 75–82. https://doi.org/10.1016/j.resconrec.2003.08.005.

    Article  Google Scholar 

  26. Morris, J.P., Thierry, B., and Gauthier, C. 2019. Shells from aquaculture: A valuable biomaterial, not a nuisance waste product. Reviews in Aquaculture 11: 42–57. https://doi.org/10.1111/raq.12225.

    Article  Google Scholar 

  27. Yoon, G.L., Kim, B.T., Kim, B.O., et al. 2003. Chemical–mechanical characteristics of crushed oyster-shell. Waste Management 23 (9): 825–834. https://doi.org/10.1016/S0956-053X(02)00159-9.

    Article  CAS  PubMed  Google Scholar 

  28. Agbaje, O.B.A., Wirth, R., Morales, L.F.G., et al. 2017. Architecture of crossed-lamellar bivalve shells: the southern giant clam ( ridacna derasa 1798). RSC Open Science 4: 170622. https://doi.org/10.1098/rsos.170622.

    Article  CAS  ADS  Google Scholar 

  29. Barros, M.C., Bello, P.M., Bao, M., et al. 2009. From waste to commodity: Transforming shells into high purity calcium carbonate. Journal of Cleaner Production 17: 400–407. https://doi.org/10.1016/j.jclepro.2008.08.013.

    Article  CAS  Google Scholar 

  30. Xiao, D., Qing, S., Chen, P., et al. 2020. Development of recycled polylactic acid/oyster shell/biomass waste composite for green packaging materials with pure natural glue and nano-fluid. Environmental Science and Pollution Research 27: 26276–26304. https://doi.org/10.1007/s11356-020-08956-1.

    Article  CAS  PubMed  Google Scholar 

  31. Yao, Z., Xia, M., Li, H., et al. 2014. Bivalve shell: Not an abundant useless waste but a functional and versatile biomaterial. Critical Reviews in Environment Science and Technology 44: 2502–2530. https://doi.org/10.1080/10643389.2013.829763.

    Article  CAS  Google Scholar 

  32. Bonnard, M., Boury, B., and Parrot, I. 2019. Key insights, tools, and future prospects on oyster shell end-of-life: A critical analysis of sustainable solutions. Environmental Science and Technology 54: 26–38. https://doi.org/10.1021/acs.est.9b03736.

    Article  CAS  PubMed  ADS  Google Scholar 

  33. Mahat, N.A., Muktar, N.K., Ismail, R., et al. 2018. Toxic metals in Perna viridis mussel and surface seawater in Pasir Gudang coastal area, Malaysia, and its health implications. Environmental Science and Pollution Research 25: 30224–30235. https://doi.org/10.1007/s11356-018-3033-8.

    Article  CAS  PubMed  Google Scholar 

  34. Seco-Reigosa, N., Peña-Rodríguez, S., Nóvoa-Muñoz, J.C., et al. 2013. Arsenic, chromium and mercury removal using mussel shell ash or a sludge/ashes waste mixture. Environmental Science and Pollution Research 20: 2670–2678. https://doi.org/10.1007/s11356-012-1192-6.

    Article  CAS  PubMed  Google Scholar 

  35. Senthil, R., Kavukcu, S.B., Aruni, A.W., et al. 2022. Utilization of leather fibrous wastes for the production of reconstituted fibric materials: Heavy metal determination and removal. Waste Disposal & Sustainable Energy 4: 29–37. https://doi.org/10.1007/s42768-022-00093-4.

    Article  Google Scholar 

  36. Chairopoulou, M.A., Garcia-Triñanes, P., and Teipel, U. 2022. Oyster shell reuse: a particle engineering perspective for the use as emulsion stabilizers. Powder Technology 408: 117721. https://doi.org/10.1016/j.powtec.2022.117721.

    Article  CAS  Google Scholar 

  37. El Biriane, M., and Barbachi, M. 2021. State-of-the-art review on recycled mussel shell waste in concrete and mortar. Innovative Infrastructure Solutions 6: 29. https://doi.org/10.1007/s41062-020-00394-9.

    Article  Google Scholar 

  38. Eziefula, U.G., Ezeh, J.C., and Eziefula, B.I. 2018. Properties of seashell aggregate concrete: A review. Construction and Building Materials 192: 287–300. https://doi.org/10.1016/j.conbuildmat.2018.10.096.

    Article  CAS  Google Scholar 

  39. Ez-Zaki, H., El Gharbi, B., and Diouri, A. 2018. Development of eco-friendly mortars incorporating glass and shell powders. Construction and Building Materials 159: 198–204. https://doi.org/10.1016/j.conbuildmat.2017.10.125.

    Article  CAS  Google Scholar 

  40. Fan, G., Liu, H., Liu, C., et al. 2022. Analysis of the influence of waste seashell as modified materials on asphalt pavement performance. Materials 15 (19): 6788. https://doi.org/10.3390/ma15196788.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  41. Hembrick-Holloman, V., Samuel, T., Mohammed, Z., et al. 2020. Ecofriendly production of bioactive tissue engineering scaffolds derived from egg-and sea-shells. Journal of Materials Research and Technology 9 (6): 13729–13739. https://doi.org/10.1016/j.jmrt.2020.09.093.

    Article  CAS  Google Scholar 

  42. Lee, C.H., Lee, D.K., Ali, M.A., et al. 2008. Effects of oyster shell on soil chemical and biological properties and cabbage productivity as a liming materials. Waste Management 28 (12): 2702–2708. https://doi.org/10.1016/j.wasman.2007.12.005.

    Article  CAS  PubMed  Google Scholar 

  43. Martinez-Garcia, C., Gonzalez-Fonteboa, B., Carro-Lopez, D., et al. 2020. Mussel shells: a canning industry by-product converted into a bio-based insulation material. Journal of Cleaner Production 269: 122343. https://doi.org/10.1016/j.jclepro.2020.122343.

    Article  CAS  Google Scholar 

  44. Tayfun, U. 2006. Effects of fillers on morphological, mechanical, flow and thermal properties of bituminous composites. MS Thesis, Middle East Technical University. Available at: https://hdl.handle.net/11511/16103. Accessed 1 Mar 2023.

  45. Ismail, R., Laroybafih, M.B., Fitriyana, D.F., et al. 2021. The effect of hydrothermal holding time on the characterization of hydroxyapatite synthesized from green mussel shells. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 80(1): 84–93. https://doi.org/10.37934/arfmts.80.1.8493

  46. Sauerwein, M., and Doubrovski, E.L. 2018. Local and recyclable materials for additive manufacturing: 3D printing with mussel shells. Materials Today Communications 15: 214–217. https://doi.org/10.1016/j.mtcomm.2018.02.028.

    Article  CAS  Google Scholar 

  47. Vette, J. 2018. Shining light on mussel shells: the development of a 3D printed and recyclable material. MS Thesis, Delft University of Technology. Available at: http://resolver.tudelft.nl/uuid:4f7f5630-b9c2-4bd7-a5b3-f77cd3ba1e9d. Accessed 1 Mar 2023.

  48. Sauerwein, M., Zlopasa, J., Doubrovski, Z., et al. 2020. Reprintable paste-based materials for additive manufacturing in a circular economy. Sustainability 12 (19): 8032. https://doi.org/10.3390/su12198032.

    Article  Google Scholar 

  49. Owuamanam, S., and Cree, D. 2020. Progress of bio-calcium carbonate waste eggshell and seashell fillers in polymer composites: A review. Journal of Composites Science 4 (2): 70. https://doi.org/10.3390/jcs4020070.

    Article  CAS  Google Scholar 

  50. Ha, S., Lee, J.W., Choi, S.H., et al. 2019. Calcination characteristics of oyster shells and their comparison with limestone from the perspective of waste recycling. Journal of Material Cycles and Waste Management 21: 1075–1084. https://doi.org/10.1007/s10163-019-00860-2.

    Article  CAS  Google Scholar 

  51. Ismail, R., Fitriyana, D.F., Santosa, Y.I., et al. 2021. The potential use of green mussel (Perna Viridis) shells for synthetic calcium carbonate polymorphs in biomaterials. Journal of Crystal Growth 572: 126282. https://doi.org/10.1016/j.jcrysgro.2021.126282.

    Article  CAS  Google Scholar 

  52. Kunitake, M.E., Mangano, L.M., Peloquin, J.M., et al. 2013. Evaluation of strengthening mechanisms in calcite single crystals from mollusk shells. Acta Biomaterialia 9 (2): 5353–5359. https://doi.org/10.1016/j.actbio.2012.09.030.

    Article  CAS  PubMed  Google Scholar 

  53. Milano, S., and Nehrke, G. 2018. Microstructures in relation to temperature-induced aragonite-to-calcite transformation in the marine gastropod Phorcus turbinatus. PLoS ONE 13: 1–20. https://doi.org/10.1371/journal.pone.0204577.

    Article  CAS  Google Scholar 

  54. Sakamoto, T., Oichi, A., Nishimura, T., et al. 2009. Calcium carbonate/polymer thin-film hybrids: Induction of the formation of patterned aragonite crystals by thermal treatment of a polymer matrix. Polymer Journal 41 (7): 522–523. https://doi.org/10.1295/polymj.PJ2009024.

    Article  CAS  Google Scholar 

  55. Yamaguchi, Ki., and Hashimoto, S. 2022. Cold sintering of calcium carbonate derived from seashells. Open Ceramics 12: 100302. https://doi.org/10.1016/j.oceram.2022.100302.

    Article  CAS  Google Scholar 

  56. Yao, Z., Xia, M., Ge, L., et al. 2014. Mechanical and thermal properties of polypropylene (PP) composites filled with CaCO3 and shell waste derived bio-fillers. Fibers Polymer 15: 1278–1287. https://doi.org/10.1007/s12221-014-1278-5.

    Article  CAS  Google Scholar 

  57. Cangiotti, J., Scatto, M., Araya-Hermosilla, E., et al. 2022. Valorization of seashell waste in polypropylene composites: an accessible solution to overcome marine landfilling. European Polymer Journal 162: 110877. https://doi.org/10.1016/j.eurpolymj.2021.110877.

    Article  CAS  Google Scholar 

  58. Cecchi, T., Giuliani, A., Iacopini, F., et al. 2019. Unprecedented high percentage of food waste powder filler in poly lactic acid green composites: Synthesis, characterization, and volatile profile. Environmental Science and Pollution Research 26: 7263–7271. https://doi.org/10.1007/s11356-019-04187-1.

    Article  CAS  PubMed  Google Scholar 

  59. Gigante, V., Cinelli, P., Righetti, M.C., et al. 2020. Evaluation of mussel shells powder as reinforcement for PLA-based biocomposites. International Journal of Molecular Sciences 21 (15): 5364. https://doi.org/10.3390/ijms21155364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lap, M.O., Kanbur, Y., Tayfun, U. 2021. The use of mussel shell as a bio-additive for poly(lactic acid) based green composites. Chemistry and Chemical Technology, 15(4): 621–626. Doi: https://doi.org/10.23939/chcht15.04.621

  61. Kocaman, S., Ahmetli, G., Cerit, A., et al. 2016. Characterization of biocomposites based on mussel shell wastes. International Journal of Metallurgical & Materials Engineering 10: 438–444. https://doi.org/10.5281/zenodo.1123921.

    Article  Google Scholar 

  62. Kochan, C. 2019. Low velocity impact behaviour of recycled mussel shell particles reinforced epoxy composites. Materials Research Express, 6(8): 085105. https://doi.org/10.1088/2053-1591/ab21ff

  63. Zamani, K., Kocaman, S., Işık, M., et al. 2022. Water sorption, thermal, and fire resistance properties of natural shell-based epoxy composites. Journal of Applied Polymer Science 139 (35): e52835. https://doi.org/10.1002/app.52835.

    Article  CAS  Google Scholar 

  64. Hamester, M.R., Balzer, P.S., and Becker, D. 2012. Characterization of calcium carbonate obtained from oyster and mussel shells and incorporation in polypropylene. Materials Research 15: 204–208. https://doi.org/10.1590/S1516-14392012005000014.

    Article  CAS  Google Scholar 

  65. Li, H.Y., Tan, Y.Q., Zhang, L., et al. 2012. Bio-filler from waste shellfish shell: Preparation, characterization, and its effect on the mechanical properties on polypropylene composites. Journal of Hazardous Materials 217: 256–262. https://doi.org/10.1016/j.jhazmat.2012.03.028.

    Article  CAS  PubMed  Google Scholar 

  66. Xia, M.S., Yao, Z.T., Ge, L.Q., et al. 2015. A potential bio-filler: The substitution effect of furfural modified clam shell for carbonate calcium in polypropylene. Journal of Composite Materials 49 (7): 807–816. https://doi.org/10.1177/0021998314525981.

    Article  CAS  ADS  Google Scholar 

  67. Karthick, R., Sirisha, P., and Sankar, M.R. 2014. Mechanical and tribological properties of PMMA-sea shell based biocomposite for dental application. Procedia Materials Science 6: 1989–2000. https://doi.org/10.1016/j.mspro.2014.07.234.

    Article  CAS  Google Scholar 

  68. Akhmetshina, Z., Mastalygina, E., and Pantyukhov, P. 2021. Oxidative degradation of polyethylene filled with nanosized crushed shells of sea oysters. Key Engineering Materials 887: 123–128. https://doi.org/10.4028/www.scientific.net/KEM.887.123.

    Article  Google Scholar 

  69. Chong, M.H., Chun, B.C., Chung, Y.C., et al. 2006. Fire-retardant plastic material from oyster-shell powder and recycled polyethylene. Journal of Applied Polymer Science 99 (4): 1583–1589. https://doi.org/10.1002/app.22484.

    Article  CAS  Google Scholar 

  70. Melo, P.M.A., Macêdo, O.B., Barbosa, G.P., et al. 2019. High-density polyethylene/mollusk shell-waste composites: Effects of particle size and coupling agent on morphology, mechanical and thermal properties. Journal of Materials Research and Technology 8: 1915–1925. https://doi.org/10.1016/j.jmrt.2019.01.008.

    Article  CAS  Google Scholar 

  71. Moustafa, H., Youssef, A.M., Duquesne, S., et al. 2017. Characterization of bio-filler derived from seashell wastes and its effect on the mechanical, thermal, and flame retardant properties of ABS composites. Polymer Composites 38: 2788–2797. https://doi.org/10.1002/pc.23878.

    Article  CAS  Google Scholar 

  72. ASTM D6866. Standard test methods for determining the biobased content of solid, liquid, and gaseous samples using radiocarbon analysis. ASTM, 2016

  73. ISO 7619-1. Determination of indentation hardness—part 1: durometer method (shore hardness). ISO, 2010

  74. ASTM D570. Standard test method for water absorption of plastics. ASTM, 2022

  75. ASTM G133. Standard test method for linearly reciprocating ball-on-flat sliding wear. ASTM, 2022

  76. Zeng, Y., Zhong, X., Liu, Z., et al. 2013. Preparation and enhancement of thermal conductivity of heat transfer oil-based MoS2 nanofluids. Journal of Nanomaterials 2013: 3. https://doi.org/10.1155/2013/270490.

    Article  CAS  Google Scholar 

  77. Bouzmane, H., Tirkeş, S., Yılmaz, V.M., et al. 2023. Contribution of surface silanization process on mechanical characteristics of TPU-based composites involving feldspar and quartz minerals. Journal of Vinyl & Additive Technology 29 (1): 109–119. https://doi.org/10.1002/vnl.21947.

    Article  CAS  Google Scholar 

  78. Zhang, L., Zhang, W., Li, M., et al. 2022. Coal fly ash reinforcement for the property enhancement of crude glycerol-based polyurethane foam composites. Waste Disposal & Sustainable Energy 4: 271–282. https://doi.org/10.1007/s42768-022-00112-4.

    Article  Google Scholar 

  79. Yusuff, A.S. 2019. Development of a composite catalyst from anthill and eggshell: An optimization study on biodiesel production from virgin and waste vegetable oils. Waste Disposal & Sustainable Energy 1: 279–288. https://doi.org/10.1007/s42768-019-00015-x.

    Article  Google Scholar 

  80. Kucuk, F., Sismanoglu, S., Kanbur, Y., et al. 2020. Effect of silane-modification of diatomite on its composites with thermoplastic polyurethane. Materials Chemistry and Physics 256: 123683. https://doi.org/10.1016/j.matchemphys.2020.123683.

    Article  CAS  Google Scholar 

  81. Yang, R., Liu, Y., Wang, K., et al. 2003. Characterization of surface interaction of inorganic fillers with silane coupling agents. Journal of Analytical and Applied Pyrolysis 70 (2): 413–425. https://doi.org/10.1016/S0165-2370(02)00200-0.

    Article  CAS  Google Scholar 

  82. Barac, N., Barcelo, E., Stojanovic, D., et al. 2022. Modification of CaCO3 and CaCO3 pin-coated cellulose paper under supercritical carbon dioxide–ethanol mixture for enhanced NO2 capture. Environmental Science and Pollution Research 29: 11707–11717. https://doi.org/10.1007/s11356-021-16503-9.

    Article  CAS  PubMed  Google Scholar 

  83. Wang, X., Ye, Y., Wu, X., et al. 2019. High-temperature Raman and FTIR study of aragonite-group carbonates. Physics and Chemistry of Minerals 46: 51–62. https://doi.org/10.1007/s00269-018-0986-6.

    Article  CAS  ADS  Google Scholar 

  84. Arslan, C., and Dogan, M. 2019. Effect of fiber amount on mechanical and thermal properties of (3-aminopropyl) triethoxysilane treated basalt fiber reinforced ABS composites. Materials Research Express  6 (11): 115340. https://doi.org/10.1088/2053-1591/ab4ddd.

    Article  Google Scholar 

  85. Yang, S., Taha-Tijerina, J., Serrato-Diaz, V., et al. 2007. Dynamic mechanical and thermal analysis of aligned vapor grown carbon nanofiber reinforced polyethylene. Composites Part B Engineering 38 (2): 228–235. https://doi.org/10.1016/j.compositesb.2006.04.003.

    Article  CAS  Google Scholar 

  86. Lou, J., and Harinath, V. 2004. Effects of mineral fillers on polystyrene melt processing. Journal of Materials Processing Technology 152 (2): 185–189. https://doi.org/10.1016/j.jmatprotec.2004.03.018.

    Article  CAS  Google Scholar 

  87. Sarabi, M., Behravesh, A., Shahi, P., et al. 2014. Effect of polymeric matrix melt flow index in reprocessing extruded wood–plastic composites. Journal of Thermoplastic Composite Materials 27 (7): 881–894. https://doi.org/10.1177/0892705712458445.

    Article  CAS  Google Scholar 

  88. Sismanoglu, S., Tayfun, U., Gradinariu, P., et al. 2022. Reuse of black cumin biomass into beneficial additive for thermoplastic polyurethane-based green composites with silane modifiers. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-022-03023-w.

    Article  Google Scholar 

  89. Chattopadhyay, D.K., and Webster, D.C. 2009. Thermal stability and flame retardancy of polyurethanes. Progress in Polymer Science 34 (10): 1068–1133. https://doi.org/10.1016/j.progpolymsci.2009.06.002.

    Article  CAS  Google Scholar 

  90. Lee, H.K., and Ko, S.W. 1993. Structure and thermal properties of polyether polyurethaneurea elastomers. Journal of Applied Polymer Science 50 (7): 1269–1280. https://doi.org/10.1002/app.1993.070500718.

    Article  CAS  Google Scholar 

  91. Araújo, R.C.S., and Pasa, V.M.D. 2002. Thermal study of polyurethane elastomers based on biopitch–PEG–MDI system. Journal of Thermal Analysis and Calorimetry 67: 313–319. https://doi.org/10.1023/A:1013906611861.

    Article  Google Scholar 

  92. Mothé, C.G., de Araujo, C.R., de Oliveira, M.A., et al. 2002. Thermal decomposition kinetics of polyurethane-composites with bagasse of sugar cane. Journal of Thermal Analysis and Calorimetry 67: 305–312. https://doi.org/10.1023/A:1013954527791.

    Article  Google Scholar 

  93. Sliwa, F., Marin, G., Charrier, F., et al. 2012. A new generation of wood polymer composite with improved thermal stability. Polymer Degradation and Stability 97 (4): 496–503. https://doi.org/10.1016/j.polymdegradstab.2012.01.023.

    Article  CAS  Google Scholar 

  94. Sözen, E., Gündüz, G., Aydemir, D., et al. 2017. Evaluation of biomass use in terms of energy, environment, health and economy. Journal Bartin Faculty Forestry 19 (1): 148–160. https://doi.org/10.24011/barofd.306215.

    Article  Google Scholar 

  95. Hu, S., Wang, Y., and Han, H. 2011. Utilization of waste freshwater mussel shell as an economic catalyst for biodiesel production. Biomass and Bioenergy 35 (8): 3627–3635. https://doi.org/10.1016/j.biombioe.2011.05.009.

    Article  CAS  Google Scholar 

  96. Funabashi, M., Ninomiya, F., Flores, E.D., et al. 2010. Biomass carbon ratio of polymer composites measured by accelerator mass spectrometry. Journal of Polymers and the Environment 18: 85–93. https://doi.org/10.1007/s10924-010-0166-3.

    Article  CAS  Google Scholar 

  97. Akgul, Y., Ahlatci, H., Turan, M.E., et al. 2019. Influence of carbon fiber content on bio-tribological performances of high-density polyethylene. Materials Research Express 6: 125307. https://doi.org/10.1088/2053-1591/ab5353.

    Article  CAS  ADS  Google Scholar 

  98. Ozdil, N., Kayseri, G.O., Menguc, G.S. 2012. Analysis of abrasion characteristics in textiles. In: Adamiak M (Eds) Abrasion Resistance of Materials. Intech, Rijeka.

  99. Polat, S., Sun, Y., Çevik, E., et al. 2019. Investigation of wear and corrosion behavior of graphene nanoplatelet-coated B4C reinforced Al–Si matrix semi-ceramic hybrid composites. Journal of Composite Materials 3 (25): 3549–3565. https://doi.org/10.1177/0021998319842297.

    Article  CAS  ADS  Google Scholar 

  100. Akar, A.O., Yildiz, U.H., Tirkes, S., et al. 2022. Influence of carbon nanotube inclusions to electrical, thermal, physical and mechanical behaviors of carbon-fiber-reinforced ABS composites. Carbon Letters 32: 987–998. https://doi.org/10.1007/s42823-022-00332-y.

    Article  Google Scholar 

  101. Karsli, N.G., Yilmaz, T., Aytac, A., et al. 2013. Investigation of erosive wear behavior and physical properties of SGF and/or calcite reinforced ABS/PA6 composites. Composites Part B Engineering 44: 385–393. https://doi.org/10.1016/j.compositesb.2012.04.074.

    Article  CAS  Google Scholar 

  102. Kaplan, A., Erdem, A., Arslan, C., et al. 2023. The roles of filler amount and particle geometry on the mechanical, thermal, and tribological performance of polyamide 6 containing silicon-based nano-additives. Silicon 15(7): 3165–3180. https://doi.org/10.1007/s12633-022-02201-9.

    Article  CAS  Google Scholar 

  103. Mohamed, S.T., Tirkes, S., Akar, A.O., et al. 2020. Hybrid nanocomposites of elastomeric polyurethane containing halloysite nanotubes and POSS nanoparticles: Tensile, hardness, damping and abrasion performance. Clay Minerals 5 (4): 281–292. https://doi.org/10.1180/clm.2020.38.

    Article  CAS  ADS  Google Scholar 

  104. Ahmed, T., Shahid, M., Azeem, F., et al. 2018. Biodegradation of plastics: Current scenario and future prospects for environmental safety. Environmental Science and Pollution Research 25: 7287–7298. https://doi.org/10.1007/s11356-018-1234-9.

    Article  CAS  PubMed  Google Scholar 

  105. Popescu, C.M., Popescu, M.C., and Vasile, C. 2010. Characterization of fungal degraded lime wood by FT-IR and 2D IR correlation spectroscopy. Microchemical Journal 95 (2): 377–387. https://doi.org/10.1016/j.microc.2010.02.021.

    Article  CAS  Google Scholar 

  106. Tayfun, U. 2023. Application of sustainable treatments to fiber surface for performance improvement of elastomeric polyurethane reinforced with basalt fiber. Journal of Vinyl & Additive Technology. https://doi.org/10.1002/vnl.22000.

    Article  Google Scholar 

  107. Zannen, S., Ghali, L., Halimi, M.T., et al. 2014. Effect of chemical extraction on physicochemical and mechanical properties of doum palm fibres. Advances in Materials Physics and Chemistry 4 (10): 203–216. https://doi.org/10.4236/ampc.2014.410024.

    Article  ADS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

SS: Experiments, Writing—original draft. YK: Formal analysis. CMP: Experiments—Biodegradation analysis. DK: Writing—review & editing. UT: Supervision, Writing—review & editing.

Corresponding author

Correspondence to Ümit Tayfun.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şişmanoğlu, S., Kanbur, Y., Popescu, CM. et al. Beneficial use of mussel shell as a bioadditive for TPU green composites by the valorization of an aqueous waste. Waste Dispos. Sustain. Energy 6, 123–137 (2024). https://doi.org/10.1007/s42768-023-00165-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42768-023-00165-z

Keywords

Navigation