Skip to main content
Log in

A Highly Sensitive Coaxial Nanofiber Mask for Respiratory Monitoring Assisted with Machine Learning

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Respiration is a critical physiological process of the body and plays an essential role in maintaining human health. Wearable piezoelectric nanofiber-based respiratory monitoring has attracted much attention due to its self-power, high linearity, noninvasiveness, and convenience. However, the limited sensitivity of conventional piezoelectric nanofibers makes it difficult to meet medical and daily respiratory monitoring requirements due to their low electromechanical conversion efficiency. Here, we present a universally applicable, highly sensitive piezoelectric nanofiber characterized by a coaxial composite structure of polyvinylidene fluoride (PVDF) and carbon nanotube (CNT), which is denoted as PS-CC. Based on elucidating the enhancement mechanism from the percolation effect, PS-CC exhibits excellent sensing performance with a high sensitivity of 3.7 V/N and a fast response time of 20 ms for electromechanical conversion. As a proof-of-concept, the nanofiber membrane is seamlessly integrated into a facial mask, facilitating accurate recognition of respiratory states. With the assistance of a one-dimensional convolutional neural network (CNN), a PS-CC-based smart mask can recognize respiratory tracts and multiple breathing patterns with a classification accuracy of up to 97.8%. Notably, this work provides an effective strategy for monitoring respiratory diseases and offers widespread utility for daily health monitoring and clinical applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data underlying this study are available in the published article. The raw data can be obtained by email contact when readers need it.

References

  1. Hu H, Huang H, Li M, Gao X, Yin L, Qi R, Wu RS, Chen X, Ma Y, Shi K, Li C, Maus TM, Huang B, Lu C, Lin M, Zhou S, Lou Z, Gu Y, Chen Y, Lei Y, Wang X, Wang R, Yue W, Yang X, Bian Y, Mu J, Park G, Xiang S, Cai S, Corey PW, Wang J, Xu S. A wearable cardiac ultrasound imager. Nature. 2023;613:667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Qian X, Chen X, Zhu L, Zhang QM. Fluoropolymer ferroelectrics: Multifunctional platform for polar-structured energy conversion. Science. 2023;380:eadg0902.

    Article  CAS  PubMed  Google Scholar 

  3. Deng W, Zhou Y, Libanori A, Chen G, Yang W, Chen J. Piezoelectric nanogenerators for personalized healthcare. Chem Soc Rev. 2022;51:3317.

    Article  Google Scholar 

  4. Chen G, Li Y, Bick M, Chen J. Smart textiles for electricity generation. Chem Rev. 2020;120:3668.

    Article  CAS  PubMed  Google Scholar 

  5. Yu X, Xie Z, Yu Y, Lee J, Vazquez-Guardado A, Luan H, Ruban J, Ning X, Akhtar A, Li D, Ji B, Liu Y, Sun R, Cao J, Huo Q, Zhong Y, Lee C, Kim S, Gutruf P, Zhang C, Xue Y, Guo Q, Chempakasseril A, Tian P, Lu W, Jeong J, Yu Y, Cornman J, Tan C, Kim B, Lee K, Feng X, Huang Y, Rogers J. Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature. 2019;575:473.

    Article  CAS  PubMed  Google Scholar 

  6. Song Y, Tay R, Li J, Xu C, Min J, Sani E, Kim G, Heng W, Kim I, Gao W. 3D-printed epi fluidic electronic skin for machine learning–powered multimodal health surveillance. Sci Adv. 2023;9:eadi6492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Xu Y, De la Paz E, Paul A, Mahato K, Sempionatto J, Tostado N, Lee M, Hota G, Lin M, Uppal A, Chen W, Dua S, Yin L, Wuerstle B, Deiss S, Mercier P, Xu S, Wang J, Cauwenberghs G. In-ear integrated sensor array for the continuous monitoring of brain activity and of lactate in sweat. Nat Biomed Eng. 2023;7:1307.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Vinikoor T, Dzidotor G, Le T, Liu Y, Kan H, Barui S, Chorsi M, Curry E, Reinhardt E, Wang H, Singh P, Merriman M, D’Orio E, Park J, Xiao S, Chapman J, Lin F, Truong C, Prasadh S, Chuba L, Killoh S, Lee S, Wu Q, Chidambaram R, Lo K, Laurencin C, Nguyen T. Injectable and biodegradable piezoelectric hydrogel for osteoarthritis treatment. Nat Commun. 2023;14:6257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang M, Zhang J, Tang Y, Li J, Zhang B, Liang E, Mao Y, Wang X. Air-flow-driven triboelectric nanogenerators for self-powered real-time respiratory monitoring. ACS Nano. 2018;12:6156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ye Z, Ling Y, Yang M, Xu Y, Zhu L, Yan Z, Chen P. A breathable, reusable, and zero-power smart face mask for wireless cough and mask-wearing monitoring. ACS Nano. 2022;16:5874.

    Article  CAS  PubMed  Google Scholar 

  11. Shin J, Jeong S, Kim J, Choi Y, Choi J, Lee J, Kim S, Kim M, Rho Y, Hong S, Choi J, Grigoropoulos C, Ko S. Dynamic pore modulation of stretchable electrospun nanofiber filter for adaptive machine learned respiratory protection. ACS Nano. 2021;15:15730.

    Article  CAS  PubMed  Google Scholar 

  12. Peng Z, Shi J, Xiao X, Hong Y, Li X, Zhang W, Cheng Y, Wang Z, Li W, Chen J, Leung MK, Yang Z. Self-charging electrostatic face masks leveraging triboelectrification for prolonged air filtration. Nat Commun. 2022;13:7835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Su Y, Chen G, Chen C, Gong Q, Xie G, Yao M, Tai H, Jiang Y, Chen J. Self-powered respiration monitoring enabled by a triboelectric nanogenerator. Adv Mater. 2021;33: e2101262.

    Article  PubMed  Google Scholar 

  14. Zhong J, Li Z, Takakuwa M, Inoue D, Hashizume D, Jiang Z, Shi Y, Ou L, Nayeem M, Umezu S, Fukuda K, Someya T. Smart face mask based on an ultrathin pressure sensor for wireless monitoring of breath conditions. Adv Mater. 2022;34: e2107758.

    Article  PubMed  Google Scholar 

  15. Khan Y, Ostfeld A, Lochner C, Pierre A, Arias A. Monitoring of vital signs with flexible and wearable medical devices. Adv Mater. 2016;28:4373.

    Article  CAS  PubMed  Google Scholar 

  16. Fang Y, Xu J, Xiao X, Zou Y, Zhao X, Zhou Y, Chen J. A deep-learning-assisted on-mask sensor network for adaptive respiratory monitoring. Adv Mater. 2022;34: e2200252.

    Article  PubMed  Google Scholar 

  17. Chen S, Qian G, Ghanem B, Wang Y, Shu Z, Zhao X, Yang L, Liao X, Zheng Y. Quantitative and real-time evaluation of human respiration signals with a shape-conformal wireless sensing system. Adv Sci. 2022;9:2203460.

    Article  Google Scholar 

  18. Ye L, Wu F, Xu R, Di Z, Lu J, Wang C, Dong A, Xu S, Xue L, Fan Z, Xu L, Li K, Li D, Kursumovic A, Zhao R, Tang R, Qiu L, Wang H, MacManus-Driscoll J, Jing Q, Li W, Yang H. Face mask integrated with flexible and wearable manganite oxide respiration sensor. Nano Energy. 2023;112: 108460.

    Article  CAS  Google Scholar 

  19. Corral-Penafiel J, Pepin J, Barbe F. Ambulatory monitoring in the diagnosis and management of obstructive sleep apnoea syndrome. Eur Respir Rev. 2013;22:312.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Haick H, Broza Y, Mochalski P, Ruzsanyi V, Amann A. Assessment, origin, and implementation of breath volatile cancer markers. Chem Soc Rev. 2014;43:1423.

    Article  CAS  PubMed  Google Scholar 

  21. Raichle M. Images of the mind: studies with modern imaging techniques. Annu Rev Psychol. 1994;45:333.

    Article  CAS  PubMed  Google Scholar 

  22. Luo Y, Abidian MR, Ahn J-H, Akinwande D, Andrews AM, Antonietti M, Bao Z, Berggren M, Berkey CA, Bettinger CJ, Chen J, Chen P, Cheng W, Cheng X, Choi S-J, Chortos A, Dagdeviren C, Dauskardt RH, Di C-A, Dickey MD, Duan X, Facchetti A, Fan Z, Fang Y, Feng J, Feng X, Gao H, Gao W, Gong X, Guo CF, Guo X, Hartel MC, He Z, Ho JS, Hu Y, Huang Q, Huang Y, Huo F, Hussain MM, Javey A, Jeong U, Jiang C, Jiang X, Kang J, Karnaushenko D, Khademhosseini A, Kim D-H, Kim I-D, Kireev D, Kong L, Lee C, Lee N-E, Lee PS, Lee T-W, Li F, Li J, Liang C, Lim CT, Lin Y, Lipomi DJ, Liu J, Liu K, Liu N, Liu R, Liu Y, Liu Y, Liu Z, Liu Z, Loh XJ, Lu N, Lv Z, Magdassi S, Malliaras GG, Matsuhisa N, Nathan A, Niu S, Pan J, Pang C, Pei Q, Peng H, Qi D, Ren H, Rogers JA, Rowe A, Schmidt OG, Sekitani T, Seo D-G, Shen G, Sheng X, Shi Q, Someya T, Song Y, Stavrinidou E, Su M, Sun X, Takei K, Tao X-M, Tee BCK, Thean AV-Y, Trung TQ, Wan C, Wang H, Wang J, Wang M, Wang S, Wang T, Wang ZL, Weiss PS, Wen H, Xu S, Xu T, Yan H, Yan X, Yang H, Yang L, Yang S, Yin L, Yu C, Yu G, Yu J, Yu S-H, Yu X, Zamburg E, Zhang H, Zhang X, Zhang X, Zhang X, Zhang Y, Zhang Y, Zhao S, Zhao X, Zheng Y, Zheng Y-Q, Zheng Z, Zhou T, Zhu B, Zhu M, Zhu R, Zhu Y, Zhu Y, Zou G, Chen X. Technology roadmap for flexible sensors. ACS Nano. 2023;17:5211.

    Article  CAS  PubMed  Google Scholar 

  23. Yoon H, Choi J, Kim J, Kim J, Min J, Kim D, Jeong S, Lee JG, Bang J, Choi SH, Jeong Y, Kim CY, Ko SH. Adaptive epidermal bioelectronics by highly breathable and stretchable metal nanowire bioelectrodes on electrospun nanofiber membrane. Adv Funct Mater. 2024. https://doi.org/10.1002/adfm.202313504.

    Article  Google Scholar 

  24. Wang Z, Shi N, Zhang Y, Zheng N, Li H, Jiao Y, Cheng J, Wang Y, Zhang X, Chen Y, Chen Y, Wang H, Xie T, Wang Y, Ma Y, Gao X, Feng X. Conformal in-ear bioelectronics for visual and auditory brain-computer interfaces. Nat Commun. 2023;14:4213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Min S, Kim D, Joe D, Kim B, Jung Y, Lee J, Lee B, Doh I, An J, Youn Y, Joung B, Yoo C, Ahn H, Lee K. Clinical validation of a wearable piezoelectric blood-pressure sensor for continuous health monitoring. Adv Mater. 2023;35: e2301627.

    Article  PubMed  Google Scholar 

  26. Li J, Carlos C, Zhou H, Sui J, Wang Y, Silva-Pedraza Z, Yang F, Dong Y, Zhang Z, Hacker TA, Liu B, Mao Y, Wang X. Stretchable piezoelectric biocrystal thin films. Nat Commun. 2023;14:6562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Feng T, Ling D, Li C, Zheng W, Zhang S, Li C, Emel’yanov A, Pozdnyakov AS, Lu L, Mao Y. Stretchable on-skin touchless screen sensor enabled by ionic hydrogel. Nano Res. 2024;17:4462.

    Article  Google Scholar 

  28. Park H, Park W, Lee CH. Electrochemically active materials and wearable biosensors for the in situ analysis of body fluids for human healthcare. NPG Asia Mater. 2021;13:22.

    Article  Google Scholar 

  29. Chen X, Li X, Shao J, An N, Tian H, Wang C, Han T, Wang L, Lu B. High-performance piezoelectric nanogenerators with imprinted P(VDF-TrFE)/BaTiO3 nanocomposite micropillars for self-powered flexible sensors. Small. 2017;13:1604245.

    Article  Google Scholar 

  30. Panahi A, Hassanzadeh A, Moulavi A. Design of a low cost, double triangle, piezoelectric sensor for respiratory monitoring applications. Sens Bio-Sens Res. 2020;30: 100378.

    Article  Google Scholar 

  31. Le TT, Curry EJ, Vinikoor T, Das R, Liu Y, Sheets D, Tran KTM, Hawxhurst CJ, Stevens JF, Hancock JN, Bilal OR, Shor LM, Nguyen TD. Piezoelectric nanofiber membrane for reusable, stable, and highly functional face mask filter with long-term biodegradability. Adv Funct Mater. 2022;32:2113040.

    Article  CAS  Google Scholar 

  32. Moshizi S, Abedi A, Sanaeepur M, Pastras C, Han Z, Wu S, Asadnia M. Polymeric piezoresistive airflow sensor to monitor respiratory patterns. J R Soc Interface. 2021;18:34875876.

    Article  Google Scholar 

  33. Tian G, Shi Y, Deng J, Yu W, Yang L, Lu Y, Zhao Y, Jin X, Ke Q, Huang C. Low-cost, scalable fabrication of all-fabric piezoresistive sensors via binder-free, in-situ welding of carbon nanotubes on bicomponent nonwovens. Adv Fiber Mater. 2024;6:120.

    Article  CAS  Google Scholar 

  34. Yang T, Deng W, Chu X, Wang X, Hu Y, Fan X, Song J, Gao Y, Zhang B, Tian G, Xiong D, Zhong S, Tang L, Hu Y, Yang W. Hierarchically microstructure-bioinspired flexible piezoresistive bioelectronics. ACS Nano. 2021;15:11555.

    Article  CAS  PubMed  Google Scholar 

  35. Yan Z, Wang L, Xia Y, Qiu R, Liu W, Wu M, Zhu Y, Zhu S, Jia C, Zhu M, Cao R, Li Z, Wang X. Flexible high-resolution triboelectric sensor array based on patterned laser-induced graphene for self-powered real-time tactile sensing. Adv Funct Mater. 2021;31:2100709.

    Article  CAS  Google Scholar 

  36. Zhao Z, Yan C, Liu Z, Fu X, Peng LM, Hu Y, Zheng Z. Machine-washable textile triboelectric nanogenerators for effective human respiratory monitoring through loom weaving of metallic yarns. Adv Mater. 2016;28:10267.

    Article  CAS  PubMed  Google Scholar 

  37. Xi B, Wang L, Yang B, Xia Y, Chen D, Wang X. Boosting output performance of triboelectric nanogenerator based on BaTiO3: La embedded nanofiber membrane for energy harvesting and wireless power transmission. Nano Energy. 2023;110: 108385.

    Article  CAS  Google Scholar 

  38. Liu J, Tian G, Yang W, Deng W. Recent progress in flexible piezoelectric devices toward human-machine interactions. Soft Sci. 2022;2:22.

    Article  CAS  Google Scholar 

  39. Lan B, Xiao X, Carlo AD, Deng W, Yang T, Jin L, Tian G, Ao Y, Yang W, Chen J. Topological nanofibers enhanced piezoelectric membranes for soft bioelectronics. Adv Funct Mater. 2022;32:2207393.

    Article  CAS  Google Scholar 

  40. Lan B, Yang T, Tian G, Ao Y, Jin L, Xiong D, Wang S, Zhang H, Deng L, Sun Y, Zhang J, Deng W, Yang W. Multichannel gradient piezoelectric transducer assisted with deep learning for broadband acoustic sensing. ACS Appl Mater Interfaces. 2023;15:12146.

    Article  CAS  PubMed  Google Scholar 

  41. Wang S, Luo Z, Liang J, Hu J, Jiang N, He J, Li Q. Polymer nanocomposite dielectrics: understanding the matrix/particle interface. ACS Nano. 2022;16:13612.

    Article  CAS  PubMed  Google Scholar 

  42. Fu Y, He H, Zhao T, Dai Y, Han W, Ma J, Xing L, Zhang Y, Xue X. A self-powered breath analyzer based on PANI/PVDF piezo-gas-sensing arrays for potential diagnostics application. Nano-Micro Lett. 2018;10:76.

    Article  Google Scholar 

  43. Wang S, Luo Z, Liang J, Hu J, Jiang N, He J, Li Q. Polymer nanocomposite dielectrics: understanding the matrix/particle interface. ACS Nano. 2022;16:1361.

    Google Scholar 

  44. Tian G, Deng W, Xiong D, Yang T, Zhang B, Ren X, Lan B, Zhong S, Jin L, Zhang H, Deng L, Yang W. Dielectric micro-capacitance for enhancing piezoelectricity via aligning MXene sheets in composites. Cell Rep Phys Sci. 2022;3: 100814.

    Article  CAS  Google Scholar 

  45. Zhang J, Yang T, Tian G, Lan B, Deng W, Tang L, Ao Y, Sun Y, Zeng W, Ren X, Li Z, Jin L, Yang W. Spatially confined MXene/PVDF nanofiber piezoelectric electronics. Adv Fiber Mater. 2024;6:133.

    Article  CAS  Google Scholar 

  46. Li T, Wei Z, Jin F, Yuan Y, Zheng W, Qian L, Wang H, Hua L, Ma J, Zhang H, Gu H, Irwin MG, Wang T, Wang S, Wang Z, Feng Z-Q. Soft ferroelectret ultrasound receiver for targeted peripheral neuromodulation. Nat Commun. 2023;14:8386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Meng N, Ren X, Santagiuliana G, Ventura L, Zhang H, Wu J, Yan H, Reece M, Bilotti E. Ultrahigh beta-phase content poly(vinylidene fluoride) with relaxor-like ferroelectricity for high energy density capacitors. Nat Commun. 2019;10:4535.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Tian G, Deng W, Gao Y, Xiong D, Yan C, He X, Yang T, Jin L, Chu X, Zhang H, Yan W, Yang W. Rich lamellar crystal baklava-structured PZT/PVDF piezoelectric sensor toward individual table tennis training. Nano Energy. 2019;59:574.

    Article  CAS  Google Scholar 

  49. Yang T, Deng W, Tian G, Deng L, Zeng W, Wu Y, Wang S, Zhang J, Lan B, Sun Y, Jin L, Yang W. Modulating piezoelectricity and mechanical strength via three-dimensional gradient structure for piezoelectric composites. Mater Horiz. 2023;10:5045.

    Article  CAS  PubMed  Google Scholar 

  50. Mackie P. The classification of viruses infecting the respiratory tract. Paediatr Respir Rev. 2003;4:84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang Q, Liang Q, Zhang Z, Kang Z, Liao Q, Ding Y, Ma M, Gao F, Zhao X, Zhang Y. Electromagnetic shielding hybrid nanogenerator for health monitoring and protection. Adv Funct Mater. 2018;28:1703801.

    Article  Google Scholar 

  52. Zhang H, Zhang J, Hu Z, Quan L, Shi L, Chen J, Xuan W, Zhang Z, Dong S, Luo J. Waist-wearable wireless respiration sensor based on triboelectric effect. Nano Energy. 2019;59:75.

    Article  CAS  Google Scholar 

  53. Sun J, Xiu K, Wang Z, Hu N, Zhao L, Zhu H, Kong F, Xiao J, Cheng L, Bi X. Multifunctional wearable humidity and pressure sensors based on biocompatible graphene/bacterial cellulose bioaerogel for wireless monitoring and early warning of sleep apnea syndrome. Nano Energy. 2023;108: 108215.

    Article  CAS  Google Scholar 

  54. Cheraghi Bidsorkhi H, Faramarzi N, Ali B, Ballam L, D’Aloia A, Tamburrano A, Sarto S. Wearable graphene-based smart face mask for real-time human respiration monitoring. Mater Des. 2023;230: 111970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Liu J, Wang H, Liu T, Wu Q, Ding Y, Ou R, Guo C, Liu Z, Wang Q. Multimodal hydrogel-based respiratory monitoring system for diagnosing obstructive sleep apnea syndrome. Adv Funct Mater. 2022;32:2204686.

    Article  CAS  Google Scholar 

  56. Ning C, Cheng R, Jiang Y, Sheng F, Yi J, Shen S, Zhang Y, Peng X, Dong K, Wang Z. Helical fiber strain sensors based on triboelectric nanogenerators for self-powered human respiratory monitoring. ACS Nano. 2022;16:2811.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Sichuan Science and Technology Program (No. 2023NSFSC0313) and the Basic Research Cultivation Project of Southwest Jiaotong University (No. 2682023KJ024). We are thankful for the help from the Analysis and Testing Center of Southwest Jiaotong University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weili Deng or Weiqing Yang.

Ethics declarations

Conflict of interest

The authors state that there are no conflicts of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 33791 KB)

Supplementary file2 (MP4 1536 KB)

Supplementary file3 (MP4 2648 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, B., Zhong, C., Wang, S. et al. A Highly Sensitive Coaxial Nanofiber Mask for Respiratory Monitoring Assisted with Machine Learning. Adv. Fiber Mater. (2024). https://doi.org/10.1007/s42765-024-00420-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42765-024-00420-w

Keywords

Navigation