Skip to main content
Log in

In Situ Graft-on Fibrous Composites and Nanostructure Interlocking Facilitate Highly Stable Wearable Sensors for SIDS Prevention

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

High-performance and reliable wearable devices for healthcare are in high demand for the health monitoring of infants, ensuring that life-threatening events can be addressed promptly. Herein, the continuous monitoring of infant respiration for preventing sudden infant death syndrome (SIDS) is proposed using high-performance flexible piezoresistive sensors (FPS). The thorny challenges associated with FPS, including the signal drift and poor repeatability, are progressively improved via the employment of high-Tg matrix, the strengthening of in situ graft-on conducting polyaniline layer by β-cyclodextrin (β-CD), and the nanostructure interlocking between the piezoresistive layer and electrodes. The sensor presents high linear sensitivity (30.7 kPa−1), outstanding recoverability (low hysteresis up to 1.98% FS), static stability (4.00% signal drift after 24 h at 2.4 kPa) and dynamic stability (1.92% decay of signal intensity after 50,000 cycles). A wireless infant respiration monitoring system is developed. Respiration patterns and the real-time respiration rate are displayed on the phone. Notifications are implemented when abnormal status such as bradypnea and tachypnea is detected.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data are available in the main text or the supplementary materials.

References

  1. Park S, Han JH, Hwang J, Yon DK, Lee SW, Kim JH, Koyanagi A, Jacob L, Oh H, Kostev K, Dragioti E, Radua J, Eun HS, Shin JI, Smith L. The global burden of sudden infant death syndrome from 1990 to 2019: a systematic analysis from the Global Burden of Disease study 2019. QJM. 2022;115:735.

    Article  CAS  PubMed  Google Scholar 

  2. Moon RY, Horne RS, Hauck FR. Sudden infant death syndrome. Lancet. 2007;370:1578.

    Article  PubMed  Google Scholar 

  3. Kinney HC, Hefti MM, Goldstein RD, Haynes RL. Sudden infant death syndrome. In: Adle-Biassette H, Harding BN, Golden JA, editors. Developmental neuropathology. Wiley: New Jersey; 2018. p. 269–81.

    Chapter  Google Scholar 

  4. Caruse S. Elon Musk’s 11 children: all about his kids and their mothers. People. 2023 September 19.

  5. Sudden unexpected infant death and sudden infant death syndrome. Division of Reproductive Health, National Center for Chronic Disease Prevention and Health Promotion. https://www.cdc.gov/sids/data.htm. Accessed 7 Apr 2023.

  6. Ul Hasan MN, Negulescu II. Wearable technology for baby monitoring: a review. J Text Eng Fash Technol. 2020;6:112.

    Google Scholar 

  7. Thach BT. The role of respiratory control disorders in SIDS. Respir Physiol Neurobiol. 2005;149:343.

    Article  PubMed  Google Scholar 

  8. Katz ES, Mitchell RB, D’Ambrosio CM. Obstructive sleep apnea in infants. Am J Respir Crit Care Med. 2012;185:805.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sun L, Huang H, Ding Q, Guo Y, Sun W, Wu Z, Qin M, Guan Q, You Z. Highly transparent, stretchable, and self-healable ionogel for multifunctional sensors, triboelectric nanogenerator, and wearable fibrous electronics. Adv Fiber Mater. 2021;4:98.

    Article  Google Scholar 

  10. Yamamoto Y, Harada S, Yamamoto D, Honda W, Arie T, Akita S, Takei K. Printed multifunctional flexible device with an integrated motion sensor for health care monitoring. Sci Adv. 2016;2: e1601473.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Guo R, Li T, Jiang C, Zong H, Li X, Wan C, Yu H, Huang X. Pressure regulated printing of semiliquid metal on electrospinning film enables breathable and waterproof wearable electronics. Adv Fiber Mater. 2023. https://doi.org/10.1007/s42765-023-00343-y.

    Article  Google Scholar 

  12. Chen LY, Tee BCK, Chortos AL, Schwartz G, Tse V, Lipomi JD, Wong HSP, McConnell MV, Bao Z. Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care. Nat Commun. 2014;5:5028.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang L, Zhang S, Wang C, Zhou Q, Zhang H, Pan G-B. Highly sensitive capacitive flexible pressure sensor based on a high-permittivity MXene nanocomposite and 3D network electrode for wearable electronics. ACS Sens. 2021;6:2630.

    Article  CAS  PubMed  Google Scholar 

  14. Meng K, Xiao X, Liu Z, Shen S, Tat T, Wang Z, Lu C, Ding W, He X, Yang J, Chen J. Kirigami-inspired pressure sensors for wearable dynamic cardiovascular monitoring. Adv Mater. 2022;34:2202478.

    Article  CAS  Google Scholar 

  15. Ates HC, Nguyen PQ, Gonzalez-Macia L, Morales-Narvaez E, Guder F, Collins JJ, Dincer C. End-to-end design of wearable sensors. Nat Rev Mater. 2022;7:887.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lin Z, Yang J, Li X, Wu Y, Wei W, Liu J, Chen J, Yang J. Large-scale and washable smart textiles based on triboelectric nanogenerator arrays for self-powered sleeping monitoring. Adv Funct Mater. 2017;28:1704112.

    Article  Google Scholar 

  17. Zheng Y, Liu H, Wang J, Cui T, Zhu J, Gui Z. Unlocking intrinsic conductive dynamics of ionogel microneedle arrays as wearable electronics for intelligent fire safety. Adv Fiber Mater. 2023. https://doi.org/10.1007/s42765-023-00344-x.

    Article  PubMed  Google Scholar 

  18. Zang Y, Zhang F, Di C-A, Zhu D. Advances of flexible pressure sensors toward artificial intelligence and health care applications. Mater Horiz. 2015;2:140.

    Article  CAS  Google Scholar 

  19. Cao K, Wu M, Bai J, Wen Z, Zhang J, Wang T, Peng M, Liu T, Jia Z, Liang Z, Jiang L. Beyond skin pressure sensing: 3D printed laminated graphene pressure sensing material combines extremely low detection limits with wide detection range. Adv Funct Mater. 2022;32:2202360.

    Article  CAS  Google Scholar 

  20. Lu P, Wang L, Zhu P, Huang J, Wang Y, Bai N, Wang Y, Li G, Yang J, Xie K, Zhang J, Yu B, Dai Y, Guo CF. Iontronic pressure sensor with high sensitivity and linear response over a wide pressure range based on soft micropillared electrodes. Sci Bull. 2021;66:1091.

    Article  Google Scholar 

  21. Wu Q, Qiao Y, Guo R, Naveed S, Hirtz T, Li X, Fu Y, Wei Y, Deng G, Yang Y, Wu X, Ren T-L. Triode-mimicking graphene pressure sensor with positive resistance variation for physiology and motion monitoring. ACS Nano. 2020;14:10104.

    Article  CAS  PubMed  Google Scholar 

  22. Wang S, Chen G, Yao B, Chee AJY, Wang Z, Du P, Qu S, Yu ACH. In situ and intraoperative detection of the ureter injury using a highly sensitive piezoresistive sensor with a tunable porous structure. ACS Appl Mater Interfaces. 2021;13:21669.

    Article  CAS  PubMed  Google Scholar 

  23. Jeong Y, Park J, Lee J, Kim K, Park I. Ultrathin, biocompatible, and flexible pressure sensor with a wide pressure range and its biomedical application. ACS Sens. 2020;5:481.

    Article  CAS  PubMed  Google Scholar 

  24. Kim Y, Chortos A, Xu W, Liu Y, Oh JY, Son D, Kang J, Foudeh AM, Zhu C, Lee Y, Niu S, Liu J, Pfattner R, Bao Z, Lee T-W. A bioinspired flexible organic artificial afferent nerve. Science. 2018;360:998.

    Article  CAS  PubMed  Google Scholar 

  25. Yang H, Fu R, Shan X, Lin X, Su Y, Jin X, Du W, Lv W, Huang G. A nature-inspired hierarchical branching structure pressure sensor with high sensitivity and wide dynamic range for versatile medical wearables. Biosens Bioelectron. 2022;203: 114028.

    Article  CAS  PubMed  Google Scholar 

  26. Park JB, Song MS, Ghosh R, Saroj RK, Hwang Y, Tchoe Y, Oh H, Baek H, Lim Y, Kim B, Kim S-W, Yi G-C. Highly sensitive and flexible pressure sensors using position- and dimension-controlled ZnO nanotube arrays grown on graphene films. NPG Asia Mater. 2021;13:57.

    Article  CAS  Google Scholar 

  27. Li G, Chen D, Li C, Liu W, Liu H. Engineered microstructure derived hierarchical deformation of flexible pressure sensor induces a supersensitive piezoresistive property in broad pressure range. Adv Sci. 2020;7:2000154.

    Article  Google Scholar 

  28. Park J, Lee Y, Hong J, Ha M, Jung Y-D, Lim H, Kim SY, Ko H. Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins. ACS Nano. 2014;8:4689.

    Article  CAS  PubMed  Google Scholar 

  29. Pang C, Lee G-Y, Kim T-I, Kim SM, Kim HN, Ahn S-H, Suh K-Y. A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nat Mater. 2012;11:795.

    Article  CAS  PubMed  Google Scholar 

  30. Budd PM, McKeown NB, Fritsch D. Free volume and intrinsic microporosity in polymers. J Mater Chem. 1977;2005:15.

    Google Scholar 

  31. Bailey EJ, Winey KI. Dynamics of polymer segments, polymer chains, and nanoparticles in polymer nanocomposite melts: a review. Prog Polym Sci. 2020;105: 101242.

    Article  CAS  Google Scholar 

  32. Langer E, Bortel K, Waskiewicz S, Lenartowicz-Klik M. Assessment of traditional plasticizers. In: Adamson P, editor. Plasticizers derived from post-consumer PET. William Andrew; 2020. p. 1–10.

    Google Scholar 

  33. Zhu C, Wu J, Yan J, Liu X. Advanced fiber materials for wearable electronics. Adv Fiber Mater. 2022;5:12.

    Article  Google Scholar 

  34. Feng P, He J, Peng S, Gao C, Zhao Z, Xiong S, Shuai C. Characterizations and interfacial reinforcement mechanisms of multicomponent biopolymer based scaffold. Mater Sci Eng: C. 2019;100:809.

    Article  CAS  Google Scholar 

  35. Zheng Y, Chen L, Wang X, Wu G. Modification of renewable cardanol onto carbon fiber for the improved interfacial properties of advanced polymer composites. Polym. 2019;12:45.

    Article  Google Scholar 

  36. Chai J-D, Head-Gordon M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys Chem Chem Phys. 2008;10:6615.

    Article  CAS  PubMed  Google Scholar 

  37. Weigend F, Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys. 2005;7:3297.

    Article  CAS  PubMed  Google Scholar 

  38. Mardirossian N, Head-Gordon M. Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals. Mol Phys. 2017;115:2315.

    Article  CAS  Google Scholar 

  39. Liu Z, Lu T, Chen Q. Intermolecular interaction characteristics of the all-carboatomic ring, cyclo[18]carbon: focusing on molecular adsorption and stacking. Carbon. 2021;171:514.

    Article  CAS  Google Scholar 

  40. Lu T, Chen F. Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem. 2012;33:580.

    Article  PubMed  Google Scholar 

  41. Humphrey W, Dalke A, Schulten KVMD. Visual molecular dynamics. J Mol Graph. 1996;14:33.

    Article  CAS  PubMed  Google Scholar 

  42. Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117:1.

    Article  CAS  Google Scholar 

  43. Stukowski A. Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool. Model Simul Mater Sci Eng. 2009;18: 015012.

    Article  Google Scholar 

  44. Sun H, Mumby SJ, Maple JR, Hagler AT. An ab initio CFF93 all-atom force field for polycarbonates. J Am Chem Soc. 1994;116:2978.

    Article  CAS  Google Scholar 

  45. Yan D, Wang Z, Guo Z, Ma Y, Wang C, Tan H, Zhang Y. Study on the properties of PLA/PBAT composite modified by nanohydroxyapatite. J Mater Res Technol. 2020;9:11895.

    Article  CAS  Google Scholar 

  46. Silva DD, Kaduri M, Poley M, Adir O, Krinsky N, Shainsky-Roitman J, Schroeder A. Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. Chem Eng J. 2018;340:9.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ramot Y, Haim-Zada M, Domb AJ, Nyska A. Biocompatibility and safety of PLA and its copolymers. Adv Drug Deliv Rev. 2016;107:153.

    Article  CAS  PubMed  Google Scholar 

  48. Shokry H, Vanamo U, Wiltschka O, Niinimäki J, Lerche M, Levon K, Linden M, Sahlgren C. Mesoporous silica particle-PLA–PANI hybrid scaffolds for cell-directed intracellular drug delivery and tissue vascularization. Nanoscale. 2015;7:14434.

    Article  CAS  PubMed  Google Scholar 

  49. Zare EN, Makvandi P, Ashtari B, Rossi F, Motahari A, Perale G. Progress in conductive polyaniline-based nanocomposites for biomedical applications: a review. J Med Chem. 2020;63:1.

    Article  CAS  PubMed  Google Scholar 

  50. Humpolíček P, Kašpárková V, Pacherník J, Stejskal J, Bober P, Capáková Z, Radaszkiewicz KA, Junkar I, Lehocký M. The biocompatibility of polyaniline and polypyrrole: a comparative study of their cytotoxicity, embryotoxicity and impurity profile. Mater Sci Eng: C. 2018;91:303.

    Article  Google Scholar 

  51. Humpolicek P, Kasparkova V, Saha P, Stejskal J. Biocompatibility of polyaniline. Synth Met. 2012;162:722.

    Article  CAS  Google Scholar 

  52. Neese F. Software update: the ORCA program system, version 4.0. WIREs Comput Mol Sci. 2018;8:e1327.

    Article  Google Scholar 

  53. Boeva Z, Sergeyev V. Polyaniline: synthesis, properties, and application. Polym Sci Ser C. 2014;56:144.

    Article  CAS  Google Scholar 

  54. Hasegawa Y, Inoue Y, Deguchi K, Ohki S, Tansho M, Shimizu T, Yazawa K. Molecular dynamics of a polyaniline/beta-cyclodextrin complex investigated by 13C solid-state NMR. J Phys Chem B. 2012;116:1758.

    Article  CAS  PubMed  Google Scholar 

  55. Sen T, Mishra S, Shimpi NG. A β-cyclodextrin based binary dopant for polyaniline: Structural, thermal, electrical, and sensing performance. Mater Sci Eng B. 2017;220:13.

    Article  CAS  Google Scholar 

  56. Tallury SS, Smyth MB, Cakmak E, Pasquinelli MA. Molecular dynamics simulations of interactions between polyanilines in their inclusion complexes with beta-cyclodextrins. J Phys Chem B. 2023;2012:116.

    Google Scholar 

  57. Li S, Yang C, Sarwar S, Nautiyal A, Zhang P, Du H, Liu N, Yin J, Deng K, Zhang X. Facile synthesis of nanostructured polyaniline in ionic liquids for high solubility and enhanced electrochemical properties. Adv Compos Hybrid Mater. 2019;2:279.

    Article  CAS  Google Scholar 

  58. Wu H, Yu G, Pan L, Liu N, McDowell MT, Bao Z, Cui Y. Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat Commun. 1943;2013:4.

    Google Scholar 

  59. Li J, Li N, Zheng Y, Lou D, Jiang Y, Jiang J, Xu Q, Yang J, Sun Y, Pan C, Wang J, Peng Z, Zheng Z, Liu W. Interfacially locked metal aerogel inside porous polymer composite for sensitive and durable flexible piezoresistive sensors. Adv Sci. 2022;9: e2201912.

    Article  Google Scholar 

  60. Cui X, Jiang Y, Hu L, Cao M, Xie H, Zhang X, Huang F, Xu Z, Zhu Y. Synergistically microstructured flexible pressure sensors with high sensitivity and ultrawide linear range for full-range human physiological monitoring. Adv Mater Technol. 2022;8: 2200609.

    Article  Google Scholar 

  61. Zhang W, Xiao Y, Duan Y, Li N, Wu L, Lou Y, Wang H, Peng Z. A high-performance flexible pressure sensor realized by overhanging cobweb-like structure on a micropost array. ACS Appl Mater Interfaces. 2020;12:48938.

    Article  CAS  PubMed  Google Scholar 

  62. Yang Y, Huang Q, Niu L, Wang D, Yan C, She Y, Zheng Z. Waterproof, ultrahigh areal-capacitance, wearable supercapacitor fabrics. Adv Mater. 2017;29:1606679.

    Article  Google Scholar 

  63. Moon RY, Carlin RF, Hand I. Sleep-related infant deaths: updated 2022 recommendations for reducing infant deaths in the sleep environment. Pediatrics. 2022;150: e2022057990.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support of following funding sources, including National Natural Science Foundation of China (No. 12172106), Natural Science Foundation of Zhejiang Province (No. LZ23A020005), the Fundamental Research Funds for the Central Universities (Zhejiang University NGICS Platform) and the specialized research projects of Huanjiang Laboratory. The authors would like to thank Ndeutala Selma Iita for the assistance in grammar and writing.

Author information

Authors and Affiliations

Authors

Contributions

Kaifeng Chen designed and conducted the experiments, analyzed the data, and composed the manuscript. Weitao Wang performed the molecular dynamics simulations. Zhihao Ye designed the Bluetooth module and coded the program for the respiration monitoring system. All authors revised the manuscript.

Corresponding authors

Correspondence to Liwu Liu, Xinyu Wang, Shaoxing Qu or Zongrong Wang.

Ethics declarations

Conflict of Interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

42765_2024_382_MOESM1_ESM.docx

Supplementary Information. Illustrations of the structures of pressure sensors; Characterizations of PANI@(PLA–PBAT) composites; Flexibility and Moisture permeability of PANI@(PLA–PBAT) composites; Impacts of PBAT content upon mechanical and piezoresistive properties of PANI@(PLA–PBAT) composites; DSC curves of PANI@(PLA–PBAT 85-15) with different doping levels of β-CD; FTIR spectra of β-CD, pristine PANI and (β-CD)-PANI powders; Decrease of the electrical conductivity of PANI after doped with β-CD; Cyclic loading–unloading test of (β-CD)/HFSA-(0.5/1); Hysteresis of PANI@(PLA–PBAT 85-15) with PAMD copper electrodes; Circuit diagram of the wireless respiration sensor illustrating data acquisition and data transmission (DOCX 2408 KB)

Supplementary Video 1. Respiration pattern visualized on mobile phone through Bluetooth communication (MP4 7107 KB)

Supplementary Video 2. Mimicking infant apnea using a peristaltic pump (MP4 16763 KB)

Supplementary Video 3. Respiration monitoring when the baby is dressed (MP4 10166 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, K., Wang, W., Ye, Z. et al. In Situ Graft-on Fibrous Composites and Nanostructure Interlocking Facilitate Highly Stable Wearable Sensors for SIDS Prevention. Adv. Fiber Mater. (2024). https://doi.org/10.1007/s42765-024-00382-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42765-024-00382-z

Keywords

Navigation