Skip to main content
Log in

Ag Nanoparticles-Decorated Bimetal Complex Selenide 3D Flowers: A Solar Energy-Driven Flexible Hybrid Supercapacitor for Smart Wearables

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

The demand for green-power-driven flexible energy storage systems is increasing. This requires new materials for powering wearable electronic devices without conceding energy and power densities. Herein, a nanograss-flower-like nickel di-vanadium selenide (NiV2Se4) is fabricated on a flexible Ni–Cu–Co fabric by a scalable oil bath deposition approach. The NiV2Se4 is decorated with silver (Ag) nanoparticles (NiV2Se4–Ag) to improve the electrical conductivity of the electrode surface. The NiV2Se4–Ag electrode exhibits a 27% higher capacity than the NiV2Se4 electrode at 1 mA cm−2, owing to the synergistic effect of Ag nanoparticles and NiV2Se4. Aqueous and flexible hybrid supercapacitors (HSCs) are fabricated with NiV2Se4–Ag and activated carbon (AC) electrodes (NiV2Se4–Ag//AC), which work up to 1.6 V. Aqueous NiV2Se4–Ag//AC HSCs maintain 76% capacitance at a current density of 10 mA cm−2 and deliver an energy density of 77 Wh kg−1 at a power density of 749 W kg−1. Moreover, these HSCs exhibit an excellent cycling stability of 95% after 10,000 galvanostatic charge–discharge cycles. Ultimately, this study demonstrates the potential of NiV2Se4–Ag//AC flexible HSCs for wearable electronics. These HSCs can withstand different bending and twisting angles without compromising the electrochemical performance. The fabricated flexible HSCs can also be recharged by sunlight, providing a sustainable way to utilize natural energy resources.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data will be made available from the corresponding author on reasonable request.

References

  1. Liu Y-Y, Xu L, Guo X-T, Lv T-T, Pang H. Vanadium sulfide based materials: synthesis, energy storage and conversion. J Mater Chem A. 2020;8:20781.

    Article  CAS  Google Scholar 

  2. Zhang Y, Shao R, Xu W, Ding J, Wang Y, Yan X, Shi W, Wang M. Soluble salt assisted synthesis of hierarchical porous carbon-encapsulated Fe3C based on MOFs gel for all-solid-state hybrid supercapacitor. Chem Eng J. 2021;419:129576.

    Article  CAS  Google Scholar 

  3. Yan Y, Zhou Y, Li Y, Liu Y. The new focus of energy storage: flexible wearable supercapacitors. Carbon Lett. 2023;33:1461.

    Article  Google Scholar 

  4. Subhadarshini S, Pavitra E, Rama Raju GS, Chodankar NR, Goswami DK, Han Y-K, Huh YS, Das NC. One-dimensional NiSe–Se hollow nanotubular architecture as a binder-free cathode with enhanced redox reactions for high-performance hybrid supercapacitors. ACS Appl Mater Interfaces. 2020;12:29302.

    CAS  PubMed  Google Scholar 

  5. Noh SH, Lee HB, Lee KS, Lee H, Han TH. Sub-second Joule-heated RuO2-decorated nitrogen-and sulfur-doped graphene fibers for flexible fiber-type supercapacitors. ACS Appl Mater Interfaces. 2022;14:29867.

    Article  CAS  PubMed  Google Scholar 

  6. Guan T, Li Z, Qiu D, Wu G, Wu J, Zhu L, Zhu M, Bao N. Recent progress of graphene fiber/fabric supercapacitors: from building block architecture, fiber assembly, and fabric construction to wearable applications. Adv Fiber Mater. 2023;5:896.

    Article  CAS  Google Scholar 

  7. Ma Y, Xie X, Yang W, Yu Z, Sun X, Zhang Y, Yang X, Kimura H, Hou C, Guo Z. Recent advances in transition metal oxides with different dimensions as electrodes for high-performance supercapacitors. Adv Compos Hybrid Mater. 2021;4:906.

    Article  CAS  Google Scholar 

  8. Attia SY, Mohamed SG, Barakat YF, Hassan HH, Zoubi WA. Supercapacitor electrode materials: addressing challenges in mechanism and charge storage. Rev Inorg Chem. 2022;42:53.

    Article  CAS  Google Scholar 

  9. Du L, Yang P, Yu X, Liu P, Song J, Mai W. Flexible supercapacitors based on carbon nanotube/MnO2 nanotube hybrid porous films for wearable electronic devices. J Mater Chem A. 2014;2:17561.

    Article  CAS  Google Scholar 

  10. Wang Q, Yan J, Fan Z. Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities. Energy Environ Sci. 2016;9:729.

    Article  CAS  Google Scholar 

  11. Pathak M, Rout CS. Hierarchical NiCo2S4 nanostructures anchored on nanocarbons and Ti3C2Tx MXene for high-performance flexible solid-state asymmetric supercapacitors. Adv Compos Hybrid Mater. 2022;5:1404.

    Article  CAS  Google Scholar 

  12. Chatterjee DP, Nandi AK. A review on the recent advances in hybrid supercapacitors. J Mater Chem A. 2021;9:15880.

    Article  CAS  Google Scholar 

  13. Patil SS, Bhat TS, Teli AM, Beknalkar SA, Dhavale SB, Faras MM, Karanjkar MM, Patil PS. Hybrid solid state supercapacitors (HSSC’s) for high energy & power density: an overview. Eng Sci. 2020;12:38.

    CAS  Google Scholar 

  14. Muzaffar A, Ahamed MB, Deshmukh K, Thirumalai J. A review on recent advances in hybrid supercapacitors: design, fabrication and applications. Renew Sustain Energy Rev. 2019;101:123.

    Article  CAS  Google Scholar 

  15. Wang Y, Song Y, Xia Y. Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem Soc Rev. 2016;45:5925.

    Article  CAS  PubMed  Google Scholar 

  16. Wang Y, Xia Y. Recent progress in supercapacitors: from materials design to system construction. Adv Mater. 2013;25:5336.

    Article  CAS  PubMed  Google Scholar 

  17. Liu H, Liu X, Wang S, Liu H-K, Li L. Transition metal based battery-type electrodes in hybrid supercapacitors: a review. Energy Storage Mater. 2020;28:122.

    Article  Google Scholar 

  18. Lamiel C, Hussain I, Rabiee H, Ogunsakin OR, Zhang K. Metal-organic framework-derived transition metal chalcogenides (S, Se, and Te): challenges, recent progress, and future directions in electrochemical energy storage and conversion systems. Coord Chem Rev. 2023;480:215030.

    Article  CAS  Google Scholar 

  19. Ali Z, Asif M, Huang X, Tang T, Hou Y. Hierarchically porous Fe2CoSe4 binary-metal selenide for extraordinary rate performance and durable anode of sodium-ion batteries. Adv Mater. 2018;30:1802745.

    Article  Google Scholar 

  20. Balamurugan J, Nguyen TT, Aravindan V, Kim NH, Lee SH, Lee JH. All ternary metal selenide nanostructures for high energy flexible charge storage devices. Nano Energy. 2019;65:103999.

    Article  CAS  Google Scholar 

  21. Morris B, Plovnick R, Wold A. Magnetic susceptibility of some transition metal chalcogenides having the Cr3S4 structure. Solid State Commun. 1969;7:291.

    Article  CAS  Google Scholar 

  22. Yang C-P, Yin Y-X, Guo Y-G. Elemental selenium for electrochemical energy storage. J Phys Chem Lett. 2015;6:256.

    Article  CAS  PubMed  Google Scholar 

  23. Du L, Du W, Ren H, Wang N, Yao Z, Shi X, Zhang B, Zai J, Qian X. Honeycomb-like metallic nickel selenide nanosheet arrays as binder-free electrodes for high-performance hybrid asymmetric supercapacitors. J Mater Chem A. 2017;5:22527.

    Article  CAS  Google Scholar 

  24. Nguyen TT, Balamurugan J, Aravindan V, Kim NH, Lee JH. Boosting the energy density of flexible solid-state supercapacitors via both ternary NiV2Se4 and NiFe2Se4 nanosheet arrays. Chem Mater. 2019;31:4490.

    Article  CAS  Google Scholar 

  25. Wang R, Xuan H, Yang J, Zhang G, Xie Z, Liang X, Han P, Wu Y. Controllable synthesis of complex nickel-vanadium selenide three dimensional flower-like structures as an attractive battery-type electrode material for high-performance hybrid supercapacitors. Electrochim Acta. 2021;388:138649.

    Article  CAS  Google Scholar 

  26. Sun Y-A, Chen L-T, Hsu S-Y, Hu C-C, Tsai D-H. Silver nanoparticles-decorating manganese oxide hybrid nanostructures for supercapacitor applications. Langmuir. 2019;35:14203.

    Article  CAS  PubMed  Google Scholar 

  27. Cho YG, Hwang C, Cheong DS, Kim YS, Song HK. Gel/solid polymer electrolytes characterized by in situ gelation or polymerization for electrochemical energy systems. Adv Mater. 2019;31:1804909.

    Article  Google Scholar 

  28. Alipoori S, Mazinani S, Aboutalebi SH, Sharif F. Review of PVA-based gel polymer electrolytes in flexible solid-state supercapacitors: opportunities and challenges. J Energy Storage. 2020;27:101072.

    Article  Google Scholar 

  29. Raju GSR, Pavitra E, Yu JS. Facile template free synthesis of Gd2O(CO3)2·H2O chrysanthemum-like nanoflowers and luminescence properties of corresponding Gd2O3: RE3+ spheres. Dalton Trans. 2013;42:11400.

    Article  CAS  PubMed  Google Scholar 

  30. Gopalakrishnan A, Badhulika S. Hierarchical architectured dahlia flower-like NiCo2O4/NiCoSe2 as a bifunctional electrode for high-energy supercapacitor and methanol fuel cell application. Energy Fuels. 2021;35:9646.

    Article  CAS  Google Scholar 

  31. Liu Y, Yang P, Wang W, Dong H, Lin J. Fabrication and photoluminescence properties of hollow Gd2O3: Ln (Ln= Eu3+, Sm3+) spheres via a sacrificial template method. CrystEngComm. 2010;12:3717.

    Article  CAS  Google Scholar 

  32. Di W, Ren X, Zhang L, Liu C, Lu S. A facile template-free route to fabricate highly luminescent mesoporous gadolinium oxides. CrystEngComm. 2011;13:4831.

    Article  CAS  Google Scholar 

  33. Merum D, Nallapureddy RR, Pallavolu MR, Mandal TK, Gutturu RR, Parvin N, Banerjee AN, Joo SW. Pseudocapacitive performance of freestanding Ni3V2O8 nanosheets for high energy and power density asymmetric supercapacitors. ACS Appl Energy Mater. 2022;5:5561.

    Article  CAS  Google Scholar 

  34. Rakov D, Sun C, Lu Z, Li S, Xu P. NiSe@ Ni1−xFexSe2 Core–shell nanostructures as a bifunctional water splitting electrocatalyst in alkaline media. Adv Energy Sustain Res. 2021;2:2100071.

    Article  CAS  Google Scholar 

  35. Kwak IH, Im HS, Jang DM, Kim YW, Park K, Lim YR, Cha EH, Park J. CoSe2 and NiSe2 nanocrystals as superior bifunctional catalysts for electrochemical and photoelectrochemical water splitting. ACS Appl Mater Interfaces. 2016;8:5327.

    Article  CAS  PubMed  Google Scholar 

  36. Taherinia D, Hatami H, Mirzaee Valadi F, Akbarzadeh E. NiSe2 nanoparticles supported on halloysite sheets as an efficient electrocatalyst toward alkaline oxygen evolution reaction. Energy Fuels. 2022;36:14331.

    Article  CAS  Google Scholar 

  37. Barjola A, Rapeyko A, Sahuquillo O, LlabrésiXamena FX, Giménez E. AgBTC MOF-mediated approach to synthesize silver nanoparticles decorated on reduced graphene oxide (rGO@Ag) for energy storage applications. ACS Appl Energy Mater. 2023;6:9159.

    Article  CAS  Google Scholar 

  38. Mathis TS, Kurra N, Wang X, Pinto D, Simon P, Gogotsi Y. Energy storage data reporting in perspective—guidelines for interpreting the performance of electrochemical energy storage systems. Adv Energy Mater. 2019;9:1902007.

    Article  CAS  Google Scholar 

  39. Sung Y-S, Lin L-Y. Systematic design of polypyrrole/carbon fiber electrodes for efficient flexible fiber-type solid-state supercapacitors. Nanomaterials. 2020;10:248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li M, Yuan P, Guo S, Liu F, Cheng J. Design and synthesis of Ni-Co and Ni-Mn layered double hydroxides hollow microspheres for supercapacitor. Int J Hydrogen Energy. 2017;42:28797.

    Article  CAS  Google Scholar 

  41. Wang R, Li X, Nie Z, Jing Q, Zhao Y, Song H, Wang H. Ag nanoparticles-decorated hierarchical porous carbon from cornstalk for high-performance supercapacitor. J Energy Storage. 2022;51:104364.

    Article  Google Scholar 

  42. Montes-Hernandez G, Di Girolamo M, Sarret G, Bureau S, Fernandez-Martinez A, Lelong C, Eymard VE. In situ formation of silver nanoparticles (Ag-NPs) onto textile fibers. ACS Omega. 2021;6:1316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu J, Wang J, Xu C, Jiang H, Li C, Zhang L, Lin J, Shen ZX. Advanced energy storage devices: basic principles, analytical methods, and rational materials design. Adv Sci. 2018;5:1700322.

    Article  Google Scholar 

  44. Augustyn V, Come J, Lowe MA, Kim JW, Taberna P-L, Tolbert SH, Abruña HD, Simon P, Dunn B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat Mater. 2013;12:518.

    Article  CAS  PubMed  Google Scholar 

  45. Wang H, Liang M, Duan D, Shi W, Song Y, Sun Z. Rose-like Ni3S4 as battery-type electrode for hybrid supercapacitor with excellent charge storage performance. Chem Eng J. 2018;350:523.

    Article  CAS  Google Scholar 

  46. Aldama I, Barranco V, Ibáñez J, Amarilla JM, Rojo J. A procedure for evaluating the capacity associated with battery-type electrode and supercapacitor-type one in composite electrodes. J Electrochem Soc. 2018;165:A4034.

    Article  CAS  Google Scholar 

  47. Iqbal MZ, Haider SS, Siddique S, Karim MRA, Zakar S, Tayyab M, Faisal MM, Sulman M, Khan A, Baghayeri M. Capacitive and diffusion-controlled mechanism of strontium oxide based symmetric and asymmetric devices. J Energy Storage. 2020;27:101056.

    Article  Google Scholar 

  48. Nagaraju G, Chandra Sekhar S, Krishna Bharat L, Yu JS. Wearable fabrics with self-branched bimetallic layered double hydroxide coaxial nanostructures for hybrid supercapacitors. ACS Nano. 2017;11:10860.

    Article  CAS  PubMed  Google Scholar 

  49. Naeem Ashiq M, Aman A, Alshahrani T, Faisal Iqbal M, Razzaq A, Najam-Ul-Haq M, Shah A, Nisar J, Tyagi D, Fahad EM. Enhanced electrochemical properties of silver-coated zirconia nanoparticles for supercapacitor application. J Taibah Univ Sci. 2021;15:10.

    Article  Google Scholar 

  50. Yun C, Hwang S. Analysis of the charging current in cyclic voltammetry and supercapacitor’s galvanostatic charging profile based on a constant-phase element. ACS Omega. 2020;6:367.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Peng H, Wei C, Wang K, Meng T, Ma G, Lei Z, Gong X. Ni0.85Se@ MoSe2 nanosheet arrays as the electrode for high-performance supercapacitors. ACS Appl Mater Interfaces. 2017;9:17067.

    Article  CAS  PubMed  Google Scholar 

  52. Wu X, Zeng F, Song X, Sha X, Zhou H, Zhang X, Liu Z, Yu M, Jiang C. In-situ growth of Ni(OH)2 nanoplates on highly oxidized graphene for all-solid-state flexible supercapacitors. Chem Eng J. 2023;456:140947.

    Article  CAS  Google Scholar 

  53. Pan J, Li S, Zhang L, Li F, Yan E, Zhang D. Rational construction of ZnCo-ZIF-derived ZnS@CoS@NiV-LDH/NF binder-free electrodes via core–shell design for supercapacitor applications with enhanced rate capability. ACS Appl Energy Mater. 2022;5:6886.

    Article  CAS  Google Scholar 

  54. Yuan Y, Chen R, Zhang H, Liu Q, Liu J, Yu J, Wang C, Sun Z, Wang J. Hierarchical NiSe@ Co2(CO3)(OH)2 heterogeneous nanowire arrays on nickel foam as electrode with high areal capacitance for hybrid supercapacitors. Electrochim Acta. 2019;294:325.

    Article  CAS  Google Scholar 

  55. Ye B, Gong C, Huang M, Ge J, Fan L, Lin J, Wu J. A high-performance asymmetric supercapacitor based on Ni3S2-coated NiSe arrays as positive electrode. New J Chem. 2019;43:2389.

    Article  CAS  Google Scholar 

  56. Nagaraju G, Cha SM, Sekhar SC, Yu JS. Metallic layered polyester fabric enabled nickel selenide nanostructures as highly conductive and binderless electrode with superior energy storage performance. Adv Energy Mater. 2017;7:1601362.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIT) (2022M3J7A1062940 and 2022R1A2C2008968). This work was also supported by the Korea Environment Industry & Technology Institute (KEITI) through a project to develop Aquatic Ecosystem Conservation Research Program, funded by the Korea Ministry of Environment (MOE) (2022003040004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ganji Seeta Rama Raju, Yun Suk Huh or Young-Kyu Han.

Ethics declarations

Conflict of Interest

All authors declare that there are no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1904 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antony, L., Pavitra, E., Ranjith, K.S. et al. Ag Nanoparticles-Decorated Bimetal Complex Selenide 3D Flowers: A Solar Energy-Driven Flexible Hybrid Supercapacitor for Smart Wearables. Adv. Fiber Mater. 6, 529–542 (2024). https://doi.org/10.1007/s42765-023-00363-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-023-00363-8

Keywords

Navigation