Skip to main content

Advertisement

Log in

Flexible Copper-Doped Silica Fibers Promote Infected Conjunctival Tissue Repair Through Antibacterial and Anti-inflammatory Effects

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

The conjunctiva is crucial in safeguarding the eye from harm or infection, thereby ensuring the preservation of the vision. The repair of infected conjunctival damage is necessary. The objective of this study is to develop copper-doped flexible silica nanofibers (SiO2@Cu NFs) with multifunctional antibacterial and anti-inflammatory characteristics. The continuous release of copper ions from electrospun membranes is shown to be effective to promote antibacterial and bioactive functions. Nanofiber membranes also exhibit biocompatibility and promote cell growth, angiogenesis, and inflammation modulation. In vivo evaluations further reveal the therapeutic efficacy of SiO2@Cu NFs to promote the structural and the functional recoveries of the conjunctiva. Taken together, SiO2@Cu NFs may hold significant promise for the fabrication of alternative ocular bandage to suppress bacterial infection and promote repair of ocular tissues and may potential be also used for related disciplines.

Graphical Abstract

Schematic diagram showing the fabrication of SiO2@Cu NFs for the regeneration of infected conjunctiva.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data will be made available on request.

Abbreviations

hAM:

Human amniotic membrane

ECM:

Extracellular matrix

PCL:

Poly(ε-caprolactone)

PLCL:

Poly(l-lactate-co-ε-caprolactone)

DDS:

Drug delivery systems

NMs:

Nanomaterials

NPs:

Nanoparticles

TEOS:

Tetraethyl orthosilicate

LPS:

Lipopolysaccharides

DPPH:

2,2-Diohenyl-1-picrylhydrazyl

RT:

Room temperature

SEM:

Scanning electron microscopy

EDS:

Energy-dispersive spectroscopy

FTIR:

Fourier-transform infrared spectroscopy

XRD:

X-ray diffraction

WCA:

Water contact angle

ICP:

Inductively coupled plasma atomic emission spectroscopy

NIH3T3:

NIH-3T3 fibroblasts

HUVEC:

Human umbilical vein endothelial cells

hSCF:

Human stromal fibroblasts

FBS:

Fetal bovine serum

UV:

Ultraviolet

CCK-8:

Cell counting kit-8

VEGF:

Vascular endothelial growth factor

ARVO:

Association of Vision and Ophthalmology Annual

H&E:

Hematoxylin and eosin staining

PAS:

Periodic acid-Schiff's

GO:

Gene Ontology

KEGG:

Kyoto Encyclopedia of Genes and Genomes

OD:

Optical density

DMEM:

Dulbecco’s modified Eagle medium

BCA:

Bicinchoninic acid

References

  1. Bandeira F, Yam GH, Fuest M, Ong HS, Liu YC, Seah XY, Shen SY, Mehta JS. Urea-de-epithelialized human amniotic membrane for ocular surface reconstruction. Stem Cells Transl Med. 2019;8:620–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Li H, Chen X, Lu WP, Wang J, Xu YS, Guo YC. Application of electrospinning in antibacterial field. Nanomaterials. 2021;11:1822.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wei Z, Wang L, Zhang S, Chen T, Yang J, Long S, Wang X. Electrospun antibacterial nanofibers for wound dressings and tissue medicinal fields: a review. J Innovative Opt Health Sci. 2020;13:2030012.

    Article  CAS  Google Scholar 

  4. Khunova V, Kovacova M, Olejnikova P, Ondreas F, Spitalsky Z, Ghosal K, Berkes D. Antibacterial electrospun polycaprolactone nanofibers reinforced by halloysite nanotubes for tissue engineering. Polymers. 2022;14:14746.

    Article  Google Scholar 

  5. Zhou S, Yang D, Yang D, Guo Y, Hu R, Li Y, Zan X, Zhang X. Injectable, self-healing and multiple responsive histamine modified hyaluronic acid hydrogels with potentialities in drug delivery, antibacterial and tissue engineering. Macromol Rapid Commun. 2022;44:2200674.

    Article  Google Scholar 

  6. Yi X, He J, Wang X, Zhang Y, Tan G, Zhou Z, Chen J, Chen D, Wang R, Tian W, Yu P, Zhou L, Ning C. Tunable mechanical, antibacterial, and cytocompatible hydrogels based on a functionalized dual network of metal coordination bonds and covalent crosslinking. ACS Appl Mater Interfaces. 2018;10:6190–8.

    Article  CAS  PubMed  Google Scholar 

  7. Lu H, Li X, Zhang M, Xu C, Li W, Wan L. Antibacterial cellulose nanocrystal-incorporated hydrogels with satisfactory vascularization for enhancing skin regeneration. Front Bioeng Biotechnol. 2022;10:876936.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Arrizabalaga JH, Nollert MU. Human amniotic membrane: a versatile scaffold for tissue engineering. ACS Biomater Sci Eng. 2018;4:2226–36.

    Article  CAS  PubMed  Google Scholar 

  9. Fenelon M, Catros S, Meyer C, Fricain JC, Obert L, Auber F, Louvrier A, Gindraux F. Applications of human amniotic membrane for tissue engineering. Membranes. 2021;11:387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Witt J, Dietrich J, Mertsch S, Schrader S, Spaniol K, Geerling G. Decellularized porcine conjunctiva as an alternative substrate for tissue-engineered epithelialized conjunctiva. Ocul Surf. 2020;18:901–11.

    Article  PubMed  Google Scholar 

  11. Chen Y, Dong X, Shafiq M, Myles G, Radacsi N, Mo X. Recent advancements on three-dimensional electrospun nanofiber scaffolds for tissue engineering. Adv Fiber Mater. 2022;4:959–86.

    Article  CAS  Google Scholar 

  12. Bosworth LA, Doherty KG, Hsuan JD, Cray SP, D’Sa RA, Pineda Molina C, Badylak SF, Williams RL. Material characterisation and stratification of conjunctival epithelial cells on electrospun poly(epsilon-caprolactone) fibres loaded with decellularised tissue matrices. Pharmaceutics. 2021;13:318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yao Q, Zhang W, Hu Y, Chen J, Shao C, Fan X, Fu Y. Electrospun collagen/poly(l-lactic acid-co-epsilon-caprolactone) scaffolds for conjunctival tissue engineering. Exp Ther Med. 2017;14:4141–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Yan D, Zhang S, Yu F, Gong D, Lin J, Yao Q, Fu Y. Insight into levofloxacin loaded biocompatible electrospun scaffolds for their potential as conjunctival substitutes. Carbohydr Polym. 2021;269:118341.

    Article  CAS  PubMed  Google Scholar 

  15. Saghiri MA, Asatourian A, Orangi J, Sorenson CM, Sheibani N. Functional role of inorganic trace elements in angiogenesis-part II: Cr, Si, Zn, Cu, and S. Crit Rev Oncol/Hematol. 2015;96:143–55.

    Article  PubMed  Google Scholar 

  16. Zhang X, Cheng X, Si Y, Yu J, Ding B. Elastic and highly fatigue resistant ZrO2–SiO2 nanofibrous aerogel with low energy dissipation for thermal insulation. Chem Eng J. 2022;433:133628.

    Article  CAS  Google Scholar 

  17. Zulkiflee I, Masri S, Zawani M, Salleh A, Amirrah IN, Wee M, Yusop SM, Fauzi MB. Silicon-based scaffold for wound healing skin regeneration applications: a concise review. Polymers. 2022;14:4219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Uriu-Adams JY, Keen CL. Copper, oxidative stress, and human health. Mol Aspects Med. 2005;26:268–98.

    Article  CAS  PubMed  Google Scholar 

  19. Das A, Sudhahar V, Chen GF, Kim HW, Youn SW, Finney L, Vogt S, Yang J, Kweon J, Surenkhuu B, Ushio-Fukai M, Fukai T. Endothelial antioxidant-1: a key mediator of copper-dependent wound healing in vivo. Sci Rep. 2016;6:33783.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang S, Wang Y, Peng Y, Yang X. Exploring the antibacteria performance of multicolor Ag, Au, and Cu nanoclusters. ACS Appl Mater Interfaces. 2019;11:8461–9.

    Article  CAS  PubMed  Google Scholar 

  21. Shen Q, Qi Y, Kong Y, Bao H, Wang Y, Dong A, Wu H, Xu Y. Advances in copper-based biomaterials with antibacterial and osteogenic properties for bone tissue engineering. Front Bioeng Biotechnol. 2021;9:795425.

    Article  PubMed  Google Scholar 

  22. Liu M, Shafiq M, Sun B, Wu J, Wang W, El-Newehy M, El-Hamshary H, Morsi Y, Ali O, Khan AUR, Mo X. Composite superelastic aerogel scaffolds containing flexible SiO2 nanofibers promote bone regeneration. Adv Healthcare Mater. 2022;11:2200499.

    Article  CAS  Google Scholar 

  23. Wu N, Chen L, Yan D, Zhou M, Shao C, Lu Y, Yao Q, Sun H, Fu Y. Trehalose attenuates TGF-beta1-induced fibrosis of hscfs by activating autophagy. Mol Cell Biochem. 2020;470:175–88.

    Article  CAS  PubMed  Google Scholar 

  24. Wu N, Yan C, Chen J, Yao Q, Lu Y, Yu F, Sun H, Fu Y. Conjunctival reconstruction via enrichment of human conjunctival epithelial stem cells by p75 through the NGF-p75-SALL2 signaling axis. Stem Cells Transl Med. 2020;9:1448–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang L, Qiu Y, Guo Y, Si Y, Liu L, Cao J, Yu J, Li X, Zhang Q, Ding B. Smart, elastic, and nanofiber-based 3d scaffolds with self-deploying capability for osteoporotic bone regeneration. Nano Lett. 2019;19:9112–20.

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Awadh SM, Yaseen ZM. Investigation of silica polymorphs stratified in siliceous geode using FTIR and XRD methods. Mater Chem Phys. 2019;228:45–50.

    Article  CAS  Google Scholar 

  27. Wang Y, Zhang W, Yao Q. Copper-based biomaterials for bone and cartilage tissue engineering. J Orthop Transl. 2021;29:60–71.

    Google Scholar 

  28. Han W, Cummings H, Duvuuru MK, Fleck S, Vahabzadeh S, Elsawa SF. In vitro osteogenic, angiogenic, and inflammatory effects of copper in β-tricalcium phosphate. MRS Adv. 2019;4:1253–9.

    Article  CAS  Google Scholar 

  29. Majewski M, Ognik K, Juskiewicz J. Copper nanoparticles modify the blood plasma antioxidant status and modulate the vascular mechanisms with nitric oxide and prostanoids involved in wistar rats. Pharmacol Rep. 2019;71:509–16.

    Article  CAS  PubMed  Google Scholar 

  30. Abramovič H, Grobin B, Poklar Ulrih N, Cigić B. Relevance and standardization of in vitro antioxidant assays: ABTS, DPPH, and Folin-Ciocalteu. J Chem. 2018;2018:1–9.

    Article  Google Scholar 

  31. Tan Z, Zhou B, Zheng J, Huang Y, Zeng H, Xue L, Wang D. Lithium and copper induce the osteogenesis-angiogenesis coupling of bone marrow mesenchymal stem cells via crosstalk between canonical wnt and hif-1alpha signaling pathways. Stem Cells Int. 2021;2021:6662164.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Li J, Zhai D, Lv F, Yu Q, Ma H, Yin J, Yi Z, Liu M, Chang J, Wu C. Preparation of copper-containing bioactive glass/eggshell membrane nanocomposites for improving angiogenesis, antibacterial activity and wound healing. Acta Biomater. 2016;36:254–66.

    Article  CAS  PubMed  Google Scholar 

  33. Giacomelli C, Trincavelli ML, Satriano C, Hansson O, La Mendola D, Rizzarelli E, Martini C. Copper(II) ions modulate angiogenin activity in human endothelial cells. Int J Biochem Cell Biol. 2015;60:185–96.

    Article  CAS  PubMed  Google Scholar 

  34. Wang X, Gao L, Han Y, Xing M, Zhao C, Peng J, Chang J. Silicon-enhanced adipogenesis and angiogenesis for vascularized adipose tissue engineering. Adv Sci. 2018;5:1800776.

    Article  Google Scholar 

  35. Kong N, Lin K, Li H, Chang J. Synergy effects of copper and silicon ions on stimulation of vascularization by copper-doped calcium silicate. J Mater Chem B. 2014;2:1100–10.

    Article  CAS  PubMed  Google Scholar 

  36. Wu Q, Xu S, Wang X, Jia B, Han Y, Zhuang Y, Sun Y, Sun Z, Guo Y, Kou H, Ning C, Dai K. Complementary and synergistic effects on osteogenic and angiogenic properties of copper-incorporated silicocarnotite bioceramic: in vitro and in vivo studies. Biomaterials. 2021;268:120553.

    Article  CAS  PubMed  Google Scholar 

  37. Liu M, Wang X, Cui J, Wang H, Sun B, Zhang J, Rolauffs B, Shafiq M, Mo X-M, Zhu Z, Wu J. Electrospun flexible magnesium-doped silica bioactive glass nanofiber membranes with anti-inflammatory and pro-angiogenic effects for infected wounds. J Mater Chem B. 2022;11:359.

    Article  Google Scholar 

  38. Wu C, Zhou Y, Xu M, Han P, Chen L, Chang J, Xiao Y. Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity. Biomaterials. 2013;34:422–33.

    Article  CAS  PubMed  Google Scholar 

  39. Jaidev LR, Kumar S, Chatterjee K. Multi-biofunctional polymer graphene composite for bone tissue regeneration that elutes copper ions to impart angiogenic, osteogenic and bactericidal properties. Colloids Surf B. 2017;159:293–302.

    Article  CAS  Google Scholar 

  40. Raffi M, Mehrwan S, Bhatti TM, Akhter JI, Hameed A, Yawar W, ul Hasan MM. Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli. Ann Microbiol. 2010;60:75–80.

    Article  CAS  Google Scholar 

  41. Murray PJ. Macrophage polarization. Annu Rev Physiol. 2017;79:541–66.

    Article  CAS  PubMed  Google Scholar 

  42. Chen Y, Hu M, Wang L, Chen W. Macrophage M1/M2 polarization. Eur J Pharmacol. 2020;877:173090.

    Article  CAS  Google Scholar 

  43. Lin R, Deng C, Li X, Liu Y, Zhang M, Qin C, Yao Q, Wang L, Wu C. Copper-incorporated bioactive glass-ceramics inducing anti-inflammatory phenotype and regeneration of cartilage/bone interface. Theranostics. 2019;9:6300–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen Y, Yuan Z, Sun W, Shafiq M, Zhu J, Chen J, Tang H, Hu L, Lin W, Zeng Y, Wang L, Zhang L, She Y, Zheng H, Zhao G, Xie D, Mo X, Chen C. Vascular endothelial growth factor-recruiting nanofiber bandages promote multifunctional skin regeneration via improved angiogenesis and immunomodulation. Adv Fiber Mater. 2023;5:327–48.

    Article  CAS  Google Scholar 

  45. Shafiq M, Rafique M, Cui Y, Pan L, Do C-W, Ho EA. An insight on ophthalmic drug delivery systems: focus on polymeric biomaterials-based carriers. J Control Release. 2023;362:446–67.

    Article  CAS  PubMed  Google Scholar 

  46. Suzuki T, Yamamoto T, Ohashi Y. The antibacterial activity of levofloxacin eye drops against staphylococci using an in vitro pharmacokinetic model in the bulbar conjunctiva. J Infect Chemother. 2016;22:360–5.

    Article  CAS  PubMed  Google Scholar 

  47. Ai F, Chen L, Yan J, Yang K, Li S, Duan H, Cao C, Li W, Zhou K. Hydroxyapatite scaffolds containing copper for bone tissue engineering. J Sol-Gel Sci Technol. 2020;95:168–79.

    Article  CAS  Google Scholar 

  48. Ren H, Pan C, Liu Y, Liu D, He X, Li X, Sun X. Fabrication, in vitro and in vivo properties of porous Zn–Cu alloy scaffolds for bone tissue engineering. Mater Chem Phys. 2022;289:126458.

    Article  CAS  Google Scholar 

  49. Ning C, Wang X, Li L, Zhu Y, Li M, Yu P, Zhou L, Zhou Z, Chen J, Tan G, Zhang Y, Wang Y, Mao C. Concentration ranges of antibacterial cations for showing the highest antibacterial efficacy but the least cytotoxicity against mammalian cells: Implications for a new antibacterial mechanism. Chem Res Toxicol. 2015;28:1815–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shi Q, Luo X, Huang Z, Midgley AC, Wang B, Liu R, Zhi D, Wei T, Zhou X, Qiao M, Zhang J, Kong D, Wang K. Cobalt-mediated multi-functional dressings promote bacteria-infected wound healing. Acta Biomater. 2019;86:465–79.

    Article  CAS  PubMed  Google Scholar 

  51. Huang Z, Zhang Y, Liu R, Li Y, Rafique M, Midgley AC, Wan Y, Yan H, Si J, Wang T, Chen C, Wang P, Shafiq M, Li J, Zhao L, Kong D, Wang K. Cobalt loaded electrospun poly(epsilon-caprolactone) grafts promote antibacterial activity and vascular regeneration in a diabetic rat model. Biomaterials. 2022;291:121901.

    Article  CAS  PubMed  Google Scholar 

  52. Zidan G, Rupenthal ID, Greene C, Seyfoddin A. Medicated ocular bandages and corneal health: potential excipients and active pharmaceutical ingredients. Pharm Dev Technol. 2018;23:255–60.

    Article  CAS  PubMed  Google Scholar 

  53. Kumari S, Singh BN, Srivastava P. Effect of copper nanoparticles on physico-chemical properties of chitosan and gelatin-based scaffold developed for skin tissue engineering application. 3 Biotech. 2019;9:102.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Gerard C, Bordeleau LJ, Barralet J, Doillon CJ. The stimulation of angiogenesis and collagen deposition by copper. Biomaterials. 2010;31:824–31.

    Article  CAS  PubMed  Google Scholar 

  55. Hemmati S, Ahmeda A, Salehabadi Y, Zangeneh A, Zangeneh MM. Synthesis, characterization, and evaluation of cytotoxicity, antioxidant, antifungal, antibacterial, and cutaneous wound healing effects of copper nanoparticles using the aqueous extract of Strawberry fruit and L-Ascorbic acid. Polyhedron. 2020;180:114425.

    Article  CAS  Google Scholar 

  56. Ginting B, Maulana I, Karnila I. Biosynthesis copper nanoparticles using blumea balsamifera leaf extracts: characterization of its antioxidant and cytotoxicity activities. Surf Interfaces. 2020;21:100799.

    Article  CAS  Google Scholar 

  57. Shafiq M, Chen Y, Hashim R, He C, Mo X, Zhou X. Reactive oxygen species-based biomaterials for regenerative medicine and tissue engineering applications. Front Bioeng Biotechnol. 2021;9:821288.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hassanshahi A, Moradzad M, Ghalamkari S, Fadaei M, Cowin AJ, Hassanshahi M. Macrophage-mediated inflammation in skin wound healing. Cells. 2022;11:2953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gu G, Erisen DE, Yang K, Zhang B, Shen M, Zou J, Qi X, Chen S, Xu X. Antibacterial and anti-inflammatory activities of chitosan/copper complex coating on medical catheters: in vitro and in vivo. J Biomed Mater Res Part B. 2022;110:1899–910.

    Article  CAS  Google Scholar 

  60. Maher P. Modulation of the neuroprotective and anti-inflammatory activities of the flavonol fisetin by the transition metals iron and copper. Antioxidants. 2020;9:1113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by Science and Technology Commission of Shanghai Municipality, China (Nos. 20S31900900, 20DZ2254900), Sino German Science Foundation Research Exchange Center, China (M-0263), and China Education Association for International Exchange (2022181). This project was also supported by Researchers Supporting Project Number (RSP2024R65), King Saud University, Riyadh, Saudi Arabia. Moreover, this project was supported by the State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University (KF2109), National Natural Science Foundation of China (No.82070919 and 82271041), the Program of Shanghai Academic/Technology Research Leader (22XD1401800); the Biomaterials and Regenerative Medicine Institute Cooperative Research Project, Shanghai Jiao Tong University School of Medicine (2022LHA06), Shanghai Key Clinical Specialty, and Shanghai Eye Disease Research Center (2022ZZ01003). This project was also supported by the Fundamental Research Funds for the Central Universities (CUSF-DH- T-2023064).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xingping Zhou, Yao Fu or Xiumei Mo.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 420 KB)

Supplementary file2 (MP4 56392 KB)

Supplementary file3 (MP4 15543 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, J., Cai, Y., Yu, X. et al. Flexible Copper-Doped Silica Fibers Promote Infected Conjunctival Tissue Repair Through Antibacterial and Anti-inflammatory Effects. Adv. Fiber Mater. 6, 278–296 (2024). https://doi.org/10.1007/s42765-023-00358-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-023-00358-5

Keywords

Navigation