Skip to main content

Advertisement

Log in

Multifunctional and Reconfigurable Electronic Fabrics Assisted by Artificial Intelligence for Human Augmentation

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Noninvasive human augmentation, namely a desirable approach for enhancing the quality of life, can be achieved through wearable electronic devices that interact with the external environment. Wearable electronic devices endure limitations, such as unreliable signal interaction when bent or deformed, excessive wiring requirements, and lack of programmability and multifunctionality. Herein, we report an intelligent and programmable (IP) fabric sensor with bending insensitivity that overcomes these challenges associated with a rapid response time (< 400 μs) and exceptional durability (> 20,000 loading–unloading cycles). A single-layer parallel electrical bilateral structure is utilized to design the IP fabric sensor with reconfigurability and only two electrodes, which caters to the requirement of stable interactions and simple wiring. The multifunctionality of the IP fabric sensor is demonstrated by designing a closed-loop interactive entertainment system, a smart home system, and a user identification and verification system. This integrated system reveals the potential of combining Internet of Things technology and artificial intelligence (AI). Hopefully, the integration of the noninvasive IP fabric sensor with AI will facilitate the advancement of interactive systems for human augmentation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data are available on request from the authors.

References

  1. Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25:44.

    Article  CAS  PubMed  Google Scholar 

  2. Zheng Q, Tang Q, Wang ZL, Li Z. Self-powered cardiovascular electronic devices and systems. Nat Rev Cardiol. 2021;18:7.

    Article  PubMed  Google Scholar 

  3. Wang G, Wang L, Meng Z, Su X, Jia C, Qiao X, Pan S, Chen Y, Cheng Y, Zhu M. Visual detection of COVID-19 from materials aspect. Adv Fiber Mater. 2022;4:1304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Azimi S, Golabchi A, Nekookar A, Rabbani S, Amiri MH, Asadi K, Abolhasani MM. Self-powered cardiac pacemaker by piezoelectric polymer nanogenerator implant. Nano Energy. 2021;83:105781.

    Article  CAS  Google Scholar 

  5. Li Q, Nan K, Floch PL, Lin Z, Sheng H, Liu J. Cyborg organoids: implantation of nanoelectronics via organogenesis for tissue-wide electrophysiology. Nano Lett. 2019;19:5781.

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Doudna JA. The promise and challenge of therapeutic genome editing. Nature. 2020;578:229.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wu Y, Zeng J, Roscoe BP, Liu P, Yao Q, Lazzarotto CR, Clement K, Cole MA, Luk K, Baricordi C, Shen AH, Ren C, Esrick EB, Manis JP, Dorfman DM, Williams DA, Biffi A, Brugnara C, Biasco L, Brendel C, Pinello L, Tsai SQ, Wolfe SA, Bauer DE. Highly efficient therapeutic gene editing of human hematopoietic stem cells. Nat Med. 2019;25:776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lu G, Nishio N, van den Berg NS, Martin BA, Fakurnejad S, van Keulen S, Colevas AD, Thurber GM, Rosenthal EL. Co-administered antibody improves penetration of antibody-dye conjugate into human cancers with implications for antibody-drug conjugates. Nat Commun. 2020;11:5667.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jenssen T, Hartmann A. Post-transplant diabetes mellitus in patients with solid organ transplants. Nat Rev Endocrinol. 2019;15:172.

    Article  PubMed  Google Scholar 

  10. Niu S, Matsuhisa N, Beker L, Li J, Wang S, Wang J, Jiang Y, Yan X, Yun Y, Burnett W, Poon ASY, Tok JBH, Chen X, Bao Z. A wireless body area sensor network based on stretchable passive tags. Nat Electron. 2019;2:361.

    Article  Google Scholar 

  11. Zhang K, Wang J, Liu T, Luo Y, Loh XJ, Chen X. Machine learning-reinforced noninvasive biosensors for healthcare. Adv Healthc Mater. 2021;10:2100734.

    Article  CAS  Google Scholar 

  12. Dan X, Cao R, Cao X, Wang Y, Xiong Y, Han J, Luo L, Yang J, Xu N, Sun J, Sun Q, Wang ZL. Whirligig-inspired hybrid nanogenerator for multi-strategy energy harvesting. Adv Fiber Mater. 2023;5:362.

    Article  Google Scholar 

  13. Lin W, Wei C, Yu S, Chen Z, Zhang C, Guo Z, Liao Q, Wang S, Lin M, Zheng Y, Liao X, Chen Z. Programmable and ultrasensitive haptic interfaces enabling closed-loop human–machine interactions. Adv Funct Mater. 2023;33:2305919.

    Article  CAS  Google Scholar 

  14. Liao X, Wang W, Wang L, Tang K, Zheng Y. Controllably enhancing stretchability of highly sensitive fiber-based strain sensors for intelligent monitoring. ACS Appl Mater Interfaces. 2018;11:2431.

    Article  Google Scholar 

  15. Mansouri M, Hussherr M-D, Strittmatter T, Buchmann P, Xue S, Camenisch G, Fussenegger M. Smart-watch-programmed green-light-operated percutaneous control of therapeutic transgenes. Nat Commun. 2021;12:3388.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wan C, Cai P, Guo X, Wang M, Matsuhisa N, Yang L, Lv Z, Luo Y, Loh XJ, Chen X. An artificial sensory neuron with visual-haptic fusion. Nat Commun. 2020;11:4602.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liao X, Song W, Zhang X, Yan C, Li T, Ren H, Liu C, Wang Y, Zheng Y. A bioinspired analogous nerve toward artificial intelligence. Nat Commun. 2020;11:268.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ye C, Yang S, Ren J, Dong S, Cao L, Pei Y, Ling S. Electroassisted core-spun triboelectric nanogenerator fabrics for intellisense and artificial intelligence perception. ACS Nano. 2022;16:4415.

    Article  CAS  PubMed  Google Scholar 

  19. Shi X, Zuo Y, Zhai P, Shen J, Yang Y, Gao Z, Liao M, Wu J, Wang J, Xu X, Tong Q, Zhang B, Wang B, Sun X, Zhang L, Pei Q, Jin D, Chen P, Peng H. Large-area display textiles integrated with functional systems. Nature. 2021;591:240.

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Yao M, Zhou R, Yuan M, Wang H, Wang L, Sun H, Fu Y, Xiao R, Wang H, Wang G, Zhu M. Multifunctional semiconducting fibers for visual detection of sarin gas. Adv Fiber Mater. 2023;5:1632.

    Article  CAS  Google Scholar 

  21. Li X, Chen L, Yuan S, Tong H, Cheng Q, Zeng H, Wei L, Zhang Q. Stretchable luminescent perovskite-polymer hydrogels for visual-digital wearable strain sensor textiles. Adv Fiber Mater. 2023;5:1671.

    Article  CAS  Google Scholar 

  22. Liao X, Song W, Zhang X, Huang H, Wang Y, Zheng Y. Directly printed wearable electronic sensing textiles toward human–machine interfaces. J Mater Chem C. 2018;6:12841.

    Article  CAS  Google Scholar 

  23. Yu M, Lyu W, Liao Y, Zhu M. Snakeskin-inspired hierarchical winkled surface for ultradurable superamphiphobic fabrics via short-fluorinated polymer reactive infusion. Adv Fiber Mater. 2023;5:543.

    Article  CAS  Google Scholar 

  24. Yin L, Kim KN, Lv J, Tehrani F, Lin M, Lin Z, Moon J-M, Ma J, Yu J, Xu S, Wang J. A self-sustainable wearable multi-modular E-textile bioenergy microgrid system. Nat Commun. 2021;12:1542.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhou Z, Chen K, Li X, Zhang S, Wu Y, Zhou Y, Meng K, Sun C, He Q, Fan W, Fan E, Lin Z, Tan X, Deng W, Yang J, Chen J. Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat Electron. 2020;3:571.

    Article  Google Scholar 

  26. Liao X, Wang W, Lin M, Li M, Wu H, Zheng Y. Hierarchically distributed microstructure design of haptic sensors for personalized fingertip mechanosensational manipulation. Mater Horiz. 2018;5:920.

    Article  CAS  Google Scholar 

  27. Sundaram S, Kellnhofer P, Li Y, Zhu J-Y, Torralba A, Matusik W. Learning the signatures of the human grasp using a scalable tactile glove. Nature. 2019;569:698.

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Lin Z, Yang J, Li X, Wu Y, Wei W, Liu J, Chen J, Yang J. Large-scale and washable smart textiles based on triboelectric nanogenerator arrays for self-powered sleeping monitoring. Adv Funct Mater. 2018;28:1704112.

    Article  Google Scholar 

  29. Fan W, He Q, Meng K, Tan X, Zhou Z, Zhang G, Yang J, Wang ZL. Machine-knitted washable sensor array textile for precise epidermal physiological signal monitoring. Sci Adv. 2020;6:eaay2840.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pang Y, Xu X, Chen S, Fang Y, Shi X, Deng Y, Wang ZL, Cao C. Skin-inspired textile-based tactile sensors enable multifunctional sensing of wearables and soft robots. Nano Energy. 2022;96: 107137.

    Article  CAS  Google Scholar 

  31. Hwang S, Kang M, Lee A, Bae S, Lee S-K, Lee SH, Lee T, Wang G, Kim T-W. Integration of multiple electronic components on a microfibre toward an emerging electronic textile platform. Nat Commun. 2022;13:3173.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Peng J, Snyder GJ. A figure of merit for flexibility. Science. 2019;366:690.

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Liao X, Liao Q, Yan X, Liang Q, Si H, Li M, Wu H, Cao S, Zhang Y. Flexible and highly sensitive strain sensors fabricated by pencil drawn for wearable monitor. Adv Funct Mater. 2015;25:2395.

    Article  CAS  Google Scholar 

  34. Wen F, Sun Z, He T, Shi Q, Zhu M, Zhang Z, Li L, Zhang T, Lee C. Machine learning glove using self-powered conductive superhydrophobic triboelectric textile for gesture recognition in VR/AR applications. Adv Sci. 2020;7:2000261.

    Article  CAS  Google Scholar 

  35. Zhang Q, Jin T, Cai J, Xu L, He T, Wang T, Tian Y, Li L, Peng Y, Lee C. Wearable triboelectric sensors enabled gait analysis and waist motion capture for IoT-based smart healthcare applications. Adv Sci. 2022;9:2103694.

    Article  CAS  Google Scholar 

  36. Wu C, Ding W, Liu R, Wang J, Wang AC, Wang J, Li S, Zi Y, Wang ZL. Keystroke dynamics enabled authentication and identification using triboelectric nanogenerator array. Mater Today. 2018;21:216.

    Article  Google Scholar 

  37. Maharjan P, Shrestha K, Bhatta T, Cho H, Park C, Salauddin M, Rahman MT, Rana SS, Lee S, Park JY. Keystroke dynamics based hybrid nanogenerators for biometric authentication and identification using artificial intelligence. Adv Sci. 2021;8:2100711.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (52202117), Natural Science Foundation of Fujian Province of China (2022J01065), Collaborative Innovation Platform Project of Fu-Xia-Quan National Independent Innovation Demonstration Zone (3502ZCQXT2022005), and Fundamental Research Funds for the Central Universities (20720220075).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinqin Liao or Zhong Chen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (MP4 2811 kb)

Supplementary file 2 (MP4 4799 kb)

Supplementary file 3 (MP4 3112 kb)

Supplementary file 4 (MP4 4089 kb)

Supplementary file 5 (DOCX 3960 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Lin, W., Zhang, C. et al. Multifunctional and Reconfigurable Electronic Fabrics Assisted by Artificial Intelligence for Human Augmentation. Adv. Fiber Mater. 6, 229–242 (2024). https://doi.org/10.1007/s42765-023-00350-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-023-00350-z

Keywords

Navigation