Skip to main content
Log in

Vertical-Aligned and Ordered-Active Architecture of Heterostructured Fibers for High Electrochemical Capacitance

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

A Publisher Correction to this article was published on 18 March 2024

This article has been updated

Abstract

Architecture of fibrous building blocks with ordered structure and high electroactivity that enables quick charge kinetic transport/intercalation is necessary for high-energy-density electrochemical supercapacitors. Herein, we report a heterostructured molybdenum disulfide@vertically aligned graphene fiber (MoS2@VA-GF), wherein well-defined MoS2 nanosheets are decorated on vertical graphene fibers by C–O–Mo covalent bonds. Benefiting from uniform microfluidic self-assembly and confined reactions, it is realized that the unique characteristics of a vertical-aligned skeleton, large faradic activity, in situ interfacial connectivity and high-exposed surface/porosity remarkably create efficiently directional ionic pathways, interfacial electron mobility and pseudocapacitive accessibility for accelerating charge transport and intercalation/de-intercalation. Resultant MoS2@VA-GF exhibits large gravimetric capacitance (564 F g−1) and reversible redox transitions in 1 M H2SO4 electrolyte. Furthermore, the MoS2@VA-GF-based solid-state supercapacitors deliver high energy density (45.57 Wh kg−1), good cycling stability (20,000 cycles) and deformable/temperature-tolerant capability. Beyond that, supercapacitors can realize actual applications of powering multicolored optical fiber lamps, wearable watch, electric fans and sunflower toys.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary Information files. Should any raw data files be needed in another format they are available from the corresponding author upon reasonable request. Source data are provided with this paper.

Change history

References

  1. Saha T, Del Cano RD, Mahato K, De la Paz E, Chen CR, Ding SC, Yin L, Wang J. Wearable electrochemical glucose sensors in diabetes management: a comprehensive review. Chem Rev. 2023;123:7854.

    Article  CAS  PubMed  Google Scholar 

  2. Zeng K, Shi X, Tang C, Liu T, Peng H. Design, fabrication and assembly considerations for electronic systems made of fibre devices. Nat Rev Mater. 2023;8:552.

    Article  ADS  Google Scholar 

  3. Ramada DL, Vries J, Vollenbroek J, Noor N, Beek O, Mihaila SM, Wieringa F, Masereeuw R, Gerritsen K, Stamatialis D. Portable, wearable and implantable artificial kidney systems: needs, opportunities and challenges. Nat Rev Nephrol. 2023;19:481.

    Article  PubMed  Google Scholar 

  4. Sahasrabudhe A, Anikeeva P. Wireless microelectronic fibers to discover gut and brain pathways. Nat Biotechnol. 2023. https://doi.org/10.1038/s41587-023-01850-4.

    Article  PubMed  Google Scholar 

  5. Yoo G, Lee YG, Im B, Kim DG, Jo YR, An GH. Integrated solution for a stable and high-performance zinc-ion battery using an electrolyte additive. Energy Storage Mater. 2023;61: 102845.

    Article  Google Scholar 

  6. Fan XY, Zhong C, Liu J, Ding J, Deng YD, Han XP, Zhang L, Hu WB, Wilkinson DP, Zhang JJ. Opportunities of flexible and portable electrochemical devices for energy storage: expanding the spotlight onto semi-solid/solid electrolytes. Chem Rev. 2022;122:17155.

    Article  CAS  PubMed  Google Scholar 

  7. Jia BB, Zhang BH, Cai Z, Yang XY, Li LD, Guo L. Construction of amorphous/crystalline heterointerfaces for enhanced electrochemical processes. eScience. 2023;3:100112.

    Article  Google Scholar 

  8. Wang H, Li JM, Li K, Lin YP, Chen JM, Gao LJ, Nicolosi V, Xiao X, Lee JM. Transition metal nitrides for electrochemical energy applications. Chem Soc Rev. 2021;50:1354.

    Article  PubMed  Google Scholar 

  9. Zheng Y, Man ZM, Zhang Y, Wu G, Lu WY, Chen WX. High-Performance stretchable supercapacitors based on centrifugal electrospinning-directed hetero-structured graphene–polyaniline hierarchical fabric. Adv Fiber Mater. 2023. https://doi.org/10.1007/s42765-023-00304-5.

    Article  PubMed  Google Scholar 

  10. Cho Y, Pak S, Lee YG, Hwang JS, Giraud P, An GH, Cha SN. Hybrid smart fiber with spontaneous self-charging mechanism for sustainable wearable electronics. Adv Funct Mater. 2020;30:1908479.

    Article  CAS  Google Scholar 

  11. Ma WJ, Zhang Y, Pan SW, Cheng YH, Shao ZY, Xiang HX, Chen GY, Zhu LP, Weng W, Bai H, Zhu MF. Smart fibers for energy conversion and storage. Chem Soc Rev. 2021;50:7009.

    Article  CAS  PubMed  Google Scholar 

  12. Lee S, An GH. Interface engineering of carbon fiber-based electrode for wearable energy storage devices. Adv Fiber Mater. 2023. https://doi.org/10.1007/s42765-023-00303-6.

    Article  Google Scholar 

  13. Khudiyev T, Lee JT, Cox JR, Argentieri E, Loke G, Yuan R, Noel GH, Tatara R, Yu Y, Logan F, Joannopoulos J, Shao-Horn Y, Fink Y. 100 m long thermally drawn supercapacitor fibers with applications to 3D printing and textiles. Adv Mater. 2020;32:2004971.

    Article  CAS  Google Scholar 

  14. Guan TX, Li ZM, Qiu DC, Wu G, Wu J, Zhu LP, Zhu MF, Bao NZ. Recent progress of graphene fiber/fabric supercapacitors: from building block architecture, fiber assembly, and fabric construction to wearable applications. Adv Fiber Mater. 2023;5:896.

    Article  CAS  Google Scholar 

  15. Chen SH, Ma WJ, Cheng YH, Weng Z, Sun B, Wang L, Chen WP, Li F, Zhu MF, Cheng HM. Scalable non-liquid-crystal spinning of locally aligned graphene fibers for high-performance wearable supercapacitors. Nano Energy. 2015;15:642.

    Article  CAS  Google Scholar 

  16. Xin GQ, Zhu WG, Deng YX, Cheng J, Zhang LT, Chung AJ, De S, Lian J. Microfluidics-enabled orientation and microstructure control of macroscopic graphene fibres. Nat Nanotechnol. 2019;14:168.

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Zhu XL, Zhang Y, Man ZM, Lu WY, Chen W, Xu JH, Bao NZ, Chen WX, Wu G. Microfluidic-assembled covalent organic frameworks@Ti3C2TX MXene vertical fibers for high-performance electrochemical supercapacitors. Adv Mater. 2023. https://doi.org/10.1002/adma.202307186.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhou ZJ, Li P, Man ZM, Zhu XL, Ye SY, Lu WY, Wu G, Chen WX. Multiscale dot-wire-sheet heterostructured nitrogen-doped carbon dots-Ti3C2Tx/Silk nanofibers for high-performance fiber-shaped supercapacitors. Angew Chem Int Ed. 2023;62: e202301618.

    Article  CAS  Google Scholar 

  19. Lee K, Shang Y, Bobrin VA, Kuchel R, Kundu D, Corrigan N, Boyer C. 3D printing nanostructured solid polymer electrolytes with high modulus and conductivity. Adv Mater. 2022;34:2204816.

    Article  CAS  Google Scholar 

  20. Zhai SL, Karahan HE, Wei L, Chen XC, Zhou Z, Wang X, Chen Y. Hydrothermal assembly of micro-nano-integrated core-sheath carbon fibers for high-performance all-carbon micro-supercapacitors. Energy Storage Mater. 2017;9:221.

    Article  Google Scholar 

  21. Ni XP, Li KM, Li CL, Wu QQ, Liu CL, Chen HF, Wu QL, Ju AQ. Construction of NiCo2O4 nanoflake arrays on cellulose-derived carbon nanofibers as a freestanding electrode for high-performance supercapacitors. Front Chem Sci Eng. 2023;17:691.

    Article  CAS  Google Scholar 

  22. Wu G, Sun SY, Zhu XL, Ma ZM, Zhang YM, Bao NZ. Microfluidic fabrication of hierarchical-ordered ZIF-L(Zn)@Ti3C2Tx core-sheath fibers for high-performance asymmetric supercapacitors. Angew Chem Int Ed. 2022;61:202115559.

    Article  Google Scholar 

  23. Cui MQ, Wang ZN, Jiang YY, Wang H. Engineering the grain boundary: a promising strategy to configure NiCoP4O12/NiCoP nanowire arrays for ultra-stable supercapacitor. Front Chem Sci Eng. 2022;16:1259.

    Article  CAS  Google Scholar 

  24. Shin H, Eom W, Lee KH, Jeong W, Kang DJ, Han TH. Highly Electroconductive and mechanically strong Ti3C2Tx MXene fibers using a deformable MXene gel. ACS Nano. 2021;15:3320.

    Article  CAS  PubMed  Google Scholar 

  25. Wang L, Xu SG, Wang Z, Yang EE, Jiang WY, Zhang SH, Jian XG, Hu FY. A nano fiber–gel composite electrolyte with high Li+ transference number for application in quasi-solid batteries. eScience. 2023;3:100090.

    Article  Google Scholar 

  26. Feng MY, Zhang Y, Zhu XL, Chen WX, Lu WY, Wu G. Interface-anchored covalent organic frameworks@amino-modified Ti3C2Tx MXene on Nylon 6 film for high-performance deformable supercapacitors. Angew Chem Int Ed. 2023;62: e202307195.

    Article  CAS  Google Scholar 

  27. Wu G, Tan PF, Wu XJ, Peng L, Cheng HY, Wang CF, Chen W, Yu ZY, Chen S. High-performance wearable micro-supercapacitors based on microfluidic-directed nitrogen-doped graphene fiber electrodes. Adv Funct Mater. 2017;27:1702493.

    Article  Google Scholar 

  28. Qu GX, Cheng JL, Li XD, Yuan DM, Chen PN, Chen XL, Wang B, Peng HS. A fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode. Adv Mater. 2016;28:3646.

    Article  CAS  PubMed  Google Scholar 

  29. Meng ZY, Qiu ZM, Shi YX, Wang SX, Zhang GX, Pi YC, Pang H. Micro/nano metal–organic frameworks meet energy chemistry: a review of materials synthesis and applications. eScience. 2023;3:100092.

    Article  Google Scholar 

  30. Guo YQ, Hong XF, Wang Y, Li Q, Meng JS, Dai RT, Liu X, He L, Mai LQ. Multicomponent hierarchical Cu-doped NiCo-LDH/CuO double arrays for ultralong-life hybrid fiber supercapacitor. Adv Funct Mater. 2019;29:1809004.

    Article  Google Scholar 

  31. Wang X, Li H, Li H, Lin S, Ding W, Zhu XG, Sheng ZG, Wang H, Zhu XB, Sun YP. 2D/2D 1T-MoS2/Ti3C2 MXene heterostructure with excellent supercapacitor performance. Adv Funct Mater. 2020;30:0190302.

    Article  CAS  Google Scholar 

  32. Xiao BH, Cai WJ, Wu PY, Xiao K, Liu ZQ. Hierarchically structured three-dimensional carbon-based integrated electrodes with enhanced pseudocapacitance and deformability. Renewables. 2023;1:227.

    Article  Google Scholar 

  33. Wu TY, Ma ZY, He YY, Wu XJ, Tang B, Yu ZY, Wu G, Chen S, Bao NZ. A covalent black phosphorus/metal-organic framework hetero-nanostructure for high-performance flexible supercapacitors. Angew Chem Int Ed. 2021;60:10366.

    Article  CAS  Google Scholar 

  34. Lu Z, Foroughi J, Wang CY, Long HR, Wallace GG. Superelastic hybrid CNT/Graphene fibers for wearable energy storage. Adv Energy Mater. 2018;8:1702047.

    Article  Google Scholar 

  35. Zhang JZ, Seyedin S, Qin S, Wang ZY, Moradi S, Yang FL, Lynch PA, Yang WR, Liu JQ, Wang XG, Razal JM. Highly conductive Ti3C2Tx MXene hybrid fibers for flexible and elastic fiber-shaped supercapacitors. Small. 2019;15:1804732.

    Article  Google Scholar 

  36. Huang H, Zhao YP, Cong TZ, Li CW, Wen NX, Zuo XQ, Guo Y, Zhang H, Fan Z, Pan LJ. Flexible and alternately layered high-loading film electrode based on 3D carbon nanocoils and PEDOT:PSS for high-energy-density supercapacitor. Adv Funct Mater. 2022;32:2110777.

    Article  CAS  Google Scholar 

  37. Choi C, Kim KM, Kim KJ, Lepro X, Spinks GM, Baughman RH, Kim SJ. Improvement of system capacitance via weavable superelastic biscrolled yarn supercapacitors. Nat Commun. 2016;7:13811.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. An GH, Hong J, Pak S, Cho Y, Lee S, Hou B, Cha S. 2D Metal Zn nanostructure electrodes for high-performance Zn ion supercapacitors. Adv Energy Mater. 2020;10:1902981.

    Article  CAS  Google Scholar 

  39. Lee YG, Lee J, An GH. Surface engineering of carbon via coupled porosity tuning and heteroatom-doping for high-performance flexible fibrous supercapacitors. Adv Funct Mater. 2021;31:2104256.

    Article  CAS  Google Scholar 

  40. Lee YG, Yoo G, Jo YR, An HR, Koo BR, An GH. Interfacial electrochemical media-engineered tunable vanadium zinc hydrate oxygen defect for enhancing the redox reaction of Zinc-Ion hybrid supercapacitors. Adv Energy Mater. 2023;13:2300630.

    Article  CAS  Google Scholar 

  41. Li Q, Cheng HY, Wu XJ, Wang CF, Wu G, Chen S. Enriched carbon dots/graphene microfibers towards high-performance micro-supercapacitors. J Mater Chem A. 2018;6:14112.

    Article  CAS  Google Scholar 

  42. Yuan YJ, Jiang L, Li X, Zuo P, Zhang XQ, Lian YL, Ma YL, Liang MS, Zhao Y, Qu LT. Ultrafast shaped laser induced synthesis of MXene quantum dots/graphene for transparent supercapacitors. Adv Mater. 2022;34: e2110013.

    Article  PubMed  Google Scholar 

  43. Zhao CH, Zhou YN, Ge ZX, Zhao CJ, Qian XZ. Facile construction of MoS2/RCF electrode for high-performance supercapacitor. Carbon. 2018;127:699.

    Article  CAS  Google Scholar 

  44. Ji HM, Liu C, Wang T, Chen J, Mao ZN, Zhao J, Hou WH, Yang G. Porous hybrid composites of few-layer MoS2 nanosheets embedded in a carbon matrix with an excellent supercapacitor electrode performance. Small. 2015;11:6480.

    Article  CAS  PubMed  Google Scholar 

  45. Yang W, He L, Tian XC, Yan MY, Yuan H, Liao XB, Meng JS, Hao ZM, Mai LQ. Carbon-MEMS-based alternating stacked MoS2@rGO-CNT micro-supercapacitor with high capacitance and energy density. Small. 2017;13:1700639.

    Article  Google Scholar 

  46. Cheng ZB, Chen YL, Yang YS, Zhang LJ, Pan H, Fan X, Xiang SC, Zhang ZJ. Metallic MoS2 nanoflowers decorated graphene nanosheet catalytically boosts the volumetric capacity and cycle life of lithium-sulfur batteries. Adv Energy Mater. 2021;11:2003718.

    Article  CAS  Google Scholar 

  47. Silveira Firmiano EG, Rabelo AC, Dalmaschio CJ, Pinheiro AN, Pereira EC, Schreiner WH, Leite ER. Supercapacitor electrodes obtained by directly bonding 2D MoS2 on reduced graphene oxide. Adv Energy Mater. 2014;4:1301380.

    Article  Google Scholar 

  48. Tang C, Zhong L, Zhang BS, Wang HF, Zhang Q. 3D Mesoporous van der waals heterostructures for trifunctional energy electrocatalysis. Adv Mater. 2018;30:1705110.

    Article  Google Scholar 

  49. Cao LJ, Yang SB, Gao W, Liu Z, Gong YJ, Ma LL, Shi G, Lei SD, Zhang YH, Zhang ST, Vajtai R, Ajayan PM. Direct laser-patterned micro-supercapacitors from paintable MoS2 films. Small. 2013;9:2905.

    Article  CAS  PubMed  Google Scholar 

  50. Han FM, Qian O, Meng GW, Lin D, Chen G, Zhang SP, Pan QJ, Zhang X, Zhu XG, Wei BQ. Structurally integrated 3D carbon tube grid-based high-performance filter capacitor. Sci. 2022;377:1004.

    Article  ADS  CAS  Google Scholar 

  51. Xiao BH, Li JX, Xu HY, Huang JL, Luo YL, Xiao K, Liu ZQ. Polymer chainmail: steric hindrance and charge compensation of anion-doped PEDOT to boost stress deformation of compressible supercapacitor. Angew Chem Int Ed. 2023;62: e202309614.

    Article  CAS  Google Scholar 

  52. Wang BJ, Wu QQ, Sun H, Zhang J, Ren J, Luo YF, Wang M, Peng HS. An intercalated graphene/(molybdenum disulfide) hybrid fiber for capacitive energy storage. J Mater Chem A. 2017;5:925.

    Article  CAS  Google Scholar 

  53. Jian XL, Li HB, Li H, Li YX, Shang YY. Flexible and freestanding MoS2/rGO/CNT hybrid fibers for high-capacity all-solid supercapacitors. Carbon. 2021;172:132.

    Article  CAS  Google Scholar 

  54. Wang DH, Han CP, Mo FN, Yang Q, Zhao YW, Li Q, Liang GJ, Dong BB, Zhi CY. Energy density issues of flexible energy storage devices. Energy Storage Mater. 2020;28:264.

    Article  Google Scholar 

  55. Xia Y, Mathis TS, Zhao MQ, Anasori B, Dang A, Zhou Z, Cho H, Gogotsi Y, Yang S. Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature. 2018;557:409.

    Article  ADS  CAS  PubMed  Google Scholar 

  56. He NF, Shan WT, Wang JL, Pan Q, Qu JG, Wang GF, Gao W. Mordant inspired wet-spinning of graphene fibers for high performance flexible supercapacitors. J Mater Chem A. 2019;7:6869.

    Article  CAS  Google Scholar 

  57. Cong HP, Ren XC, Wang P, Yu SH. Wet-spinning assembly of continuous, neat, and macroscopic graphene fibers. Sci Rep. 2012;2:613.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Liu S, Nie CB, Zhou DH, Shen J, Feng SL. Direct growth of vertical structure MoS2 nanosheets array film via CVD method for photodetection. Phys E. 2020;117: 113592.

    Article  CAS  Google Scholar 

  59. Teng YQ, Zhao HL, Zhang ZJ, Li ZL, Xia Q, Zhang Y, Zhao LN, Du XF, Du ZH, Lv PP, Swierczek K. MoS2 nanosheets vertically grown on graphene sheets for lithium-ion battery anodes. ACS Nano. 2016;10:8526.

    Article  CAS  PubMed  Google Scholar 

  60. Mahmood Q, Park SK, Kwon KD, Chang SJ, Hong JY, Shen G, Jung YM, Park TJ, Khang SW, Kim WS, KongJ PHS. Transition from diffusion-controlled intercalation into extrinsically pseudocapacitive charge storage of MoS2 by nanoscale heterostructuring. Adv Energy Mater. 2016;6:1501115.

    Article  Google Scholar 

  61. Xin GQ, Yao TK, Sun HT, Scott SM, Shao DL, Wang GK, Lian J. Highly thermally conductive and mechanically strong graphene fibers. Sci. 2015;349:1083.

    Article  ADS  CAS  Google Scholar 

  62. He JR, Hartmann G, Lee M, Hwang GS, Chen YF, Manthiram A. Freestanding 1T MoS2/graphene heterostructures as a highly efficient electrocatalyst for lithium polysulfides in Li-S batteries. Energy Environ Sci. 2019;12:344.

    Article  CAS  Google Scholar 

  63. Xie XQ, Ao ZM, Su DW, Zhang JQ, Wang GX. MoS2/Graphene composite anodes with enhanced performance for sodium-ion batteries: the role of the two-dimensional heterointerface. Adv Funct Mater. 2015;25:1393.

    Article  CAS  Google Scholar 

  64. Wang LJ, Liu FH, Zhao BY, Ning YS, Zhang LF, Bradley R, Wu WP. Carbon nanobowls filled with MoS2 nanosheets as electrode materials for supercapacitors. ACS Appl Nano Mater. 2020;3:6448.

    Article  CAS  Google Scholar 

  65. Soon JM, Loh KP. Electrochemical double-layer capacitance of MoS2 nanowall films. Electrochem Solid-State Lett. 2007;10:A250.

    Article  CAS  Google Scholar 

  66. Feng N, Meng RJ, Zu LH, Feng YT, Peng CX, Huang JM, Liu GL, Chen BJ, Yang JH. A polymer-direct-intercalation strategy for MoS2/carbon-derived heteroaerogels with ultrahigh pseudocapacitance. Nat Commun. 2019;10:1372.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  67. Pan QC, Zhang QB, Zheng FH, Liu YZ, Li YP, Ou X, Xiong XH, Yang CH, Liu ML. Construction of MoS2/C hierarchical tubular heterostructures for high-performance sodium ion batteries. ACS Nano. 2018;12:12578.

    Article  CAS  PubMed  Google Scholar 

  68. Chen XL, Qiu LB, Ren J, Guan GZ, Lin HJ, Zhang ZT, Chen PN, Wang YG, Peng HS. Novel electric double-layer capacitor with a coaxial fiber structure. Adv Mater. 2013;25:6436.

    Article  CAS  PubMed  Google Scholar 

  69. Zhang ZT, Deng J, Li XY, Yang ZB, He SS, Chen XL, Guan GZ, Ren J, Peng HS. Superelastic supercapacitors with high performances during stretching. Adv Mater. 2015;27:356.

    Article  CAS  PubMed  Google Scholar 

  70. Zhang JZ, Uzun S, Seyedin SY, Lynch PA, Akuzum B, Wang ZY, Qin S, Alhabeb M, Shuck CE, Lei WE, Kumbur EC, Yang WR, Wang XG, Dion G, Razal JM, Gogotsi Y. Additive-free MXene liquid crystals and fibers. ACS Cent Sci. 2020;6:254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhang WY, Wei S, Wu YN, Wang YL, Zhang M, Roy D, Wang H, Yuan JY, Zhao Q. Poly(Ionic Liquid)-derived graphitic nanoporous carbon membrane enables superior supercapacitive energy storage. ACS Nano. 2019;13:10261.

    Article  CAS  PubMed  Google Scholar 

  72. Yu N, Yin H, Zhang W, Liu Y, Tang ZY, Zhu MQ. High-performance fiber-shaped all-solid-state asymmetric supercapacitors based on ultrathin MnO2 nanosheet/carbon fiber cathodes for wearable electronics. Adv Energy Mater. 2016;6:1501458.

    Article  Google Scholar 

  73. Wen JF, Xu BG, Zhou JY, Xu JT, Chen YJ. 3D patternable supercapacitors from hierarchically architected porous fiber composites for wearable and waterproof energy storage. Small. 2019;15:1901313.

    Article  Google Scholar 

  74. Zhai T, Lu XH, Ling YC, Yu MH, Wang GM, Liu TY, Liang CL, Tong YX, Li Y. A new benchmark capacitance for supercapacitor anodes by mixed-valence sulfur-doped V6O13-x. Adv Mater. 2014;26:5869.

    Article  CAS  PubMed  Google Scholar 

  75. Li XL, Li XD, Cheng JL, Yuan DM, Ni W, Guan Q, Gao LZ, Wang B. Fiber-shaped solid-state supercapacitors based on molybdenum disulfide nanosheets for a self-powered photodetecting system. Nano Energy. 2016;21:228.

    Article  ADS  CAS  Google Scholar 

  76. Tian JY, Cui NJ, Chen PN, Guo KK, Chen XL. High-performance wearable supercapacitors based on PANI/N-CNT@CNT fiber with a designed hierarchical core-sheath structure. J Mater Chem A. 2021;9:20635.

    Article  CAS  Google Scholar 

  77. Zhou WJ, Zhou K, Liu XJ, Hu RZ, Liu H, Chen SW. Flexible wire-like all-carbon supercapacitors based on porous core-shell carbon fibers. J Mater Chem A. 2014;2:7250.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (22278378), Zhejiang Provincial Natural Science Foundation of China (LDQ24E030001), Natural Science Foundation of Jiangsu Province (BK20211592), and Science Foundation of Zhejiang Sci-Tech University (22212011-Y).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ningzhong Bao or Guan Wu.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The Graphic Abstract has been replaced.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 10975 KB)

Supplementary file2 (AVI 1275 KB)

Supplementary file3 (AVI 3542 KB)

Supplementary file4 (AVI 5568 KB)

Supplementary file5 (AVI 9094 KB)

Supplementary file6 (MP4 2200 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Qiu, H., Zhang, Y. et al. Vertical-Aligned and Ordered-Active Architecture of Heterostructured Fibers for High Electrochemical Capacitance. Adv. Fiber Mater. 6, 312–328 (2024). https://doi.org/10.1007/s42765-023-00349-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-023-00349-6

Keywords

Navigation