Skip to main content
Log in

Playing with Chlorine-Based Post-modification Strategies for Manufacturing Silica Nanofibrous Membranes Acting as Stable Hydrophobic Separation Barriers

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Highly stable hydrophobic silica-based membranes were successfully fabricated through chemical post-modification of directly electrospun silica nanofibrous membranes. Five different Si-alkoxy chlorides were tried as reagents at room temperature, allowing for an easy two-step production process. Trimethylchlorosilane (TMCS) was determined as to be the most suitable modifier, for this purpose. The modified membrane exhibits long-term hydrophobicity even under high humidity and water submersion, maintaining this property after exposure to elevated temperatures and acidic conditions, surpassing the unmodified membrane. The separation effectiveness for immiscible water/solvent solutions was proven, followed by an investigation into the relation between the surface tension of some miscible water/solvent solutions and the resulting wetting behavior of the TMCS-modified membrane, to utilize the membrane as a process intensification tool, specifically as a solvent gate.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

References

  1. Wae AbdulKadir WAF, Ahmad AL, Seng OB, Che Lah NF. Biomimetic hydrophobic membrane: a review of anti-wetting properties as a potential factor in membrane development for membrane distillation (MD). J Ind Eng Chem. 2020;91:15–36.

    Article  CAS  Google Scholar 

  2. Xu D, Zhu Z, Li J. Recent progress in electrospun nanofibers for the membrane distillation of hypersaline wastewaters. Adv Fiber Mater. 2022;4:6:1357–1374.

    Article  Google Scholar 

  3. Kiani A, Bhave RR, Sirkar KK. Solvent extraction with immobilized interfaces in a microporous hydrophobic membrane. J Memb Sci. 1984;20:125–45.

    Article  CAS  Google Scholar 

  4. Kujawska A, Knozowska K, Kujawa J, Li G, Kujawski W. Fabrication of PDMS based membranes with improved separation efficiency in hydrophobic pervaporation. Sep Purif Technol. 2020;234: 116092.

    Article  Google Scholar 

  5. Kujawa J, Cerneaux S, Kujawski W. Removal of hazardous volatile organic compounds from water by vacuum pervaporation with hydrophobic ceramic membranes. J Memb Sci. 2015;474:11–9.

    Article  CAS  Google Scholar 

  6. Qian X, Sun F, Sun J, Wu H, Xiao F, Wu X, et al. Imparting surface hydrophobicity to metal-organic frameworks using a facile solution-immersion process to enhance water stability for CO2 capture. Nanoscale. 2017;9:2003–8.

    Article  CAS  PubMed  Google Scholar 

  7. Rosli A, Ahmad AL, Low SC. Anti-wetting polyvinylidene fluoride membrane incorporated with hydrophobic polyethylene-functionalized-silica to improve CO2 removal in membrane gas absorption. Sep Purif Technol. 2019;221:275–85.

    Article  CAS  Google Scholar 

  8. Hwang SH, Song JY, Il RH, Oh JH, Lee S, Lee D, et al. Adaptive electrospinning system based on reinforcement learning for uniform-thickness nanofiber air filters. Adv Fib Mater. 2023. https://doi.org/10.1007/s42765-022-00247-3.

    Article  Google Scholar 

  9. Ramakrishna S, Fujihara K, Teo WE, Lim T-C, Ma Z. An introduction to electrospinning and nanofibers. World Scientific; 2005.

  10. Pan CY, Xu GR, Xu K, Zhao HL, Wu YQ, Su HC, et al. Electrospun nanofibrous membranes in membrane distillation: recent developments and future perspectives. Sep Purif Technol. 2019;221:44–63.

    Article  CAS  Google Scholar 

  11. De Keer L, Kilic KI, Van Steenberge PHM, Daelemans L, Kodura D, Frisch H, et al. Computational prediction of the molecular configuration of three-dimensional network polymers. Nat Mater. 2021;20:1422–30.

    Article  PubMed  ADS  Google Scholar 

  12. Scaffaro R, Gulino EF, Citarrella MC. Biodegradable membrane with high porosity and hollow structure obtained via electrospinning for oil spill clean-up application. J Polym Environ. 2023. https://doi.org/10.1007/s10924-023-02876-0.

    Article  Google Scholar 

  13. Wendorff JH, Agarwal S, Greiner A. Electrospinning: materials, processing and applications. John Wiley & Sons; 2012.

  14. Efome JE, Rana D, Matsuura T, Lan CQ. Experiment and modeling for flux and permeate concentration of heavy metal ion in adsorptive membrane filtration using a metal-organic framework incorporated nanofibrous membrane. Chem Eng J. 2018;352:737–44.

    Article  CAS  Google Scholar 

  15. Su CI, Shih JH, Huang MS, Wang CM, Shih WC, Liu Y, sheng,. A study of hydrophobic electrospun membrane applied in seawater desalination by membrane distillation. Fib Polym. 2012;13:698–702.

    Article  CAS  Google Scholar 

  16. Zhu Z, Li Z, Zhong L, Zhang R, Cui F, Wang W. Dual-biomimetic superwetting silica nanofibrous membrane for oily water purification. J Memb Sci. 2019;572:73–81.

    Article  CAS  Google Scholar 

  17. Wang Y, Di J, Wang L, Li X, Wang N, Wang B, et al. Infused-liquid-switchable porous nanofibrous membranes for multiphase liquid separation. Nat Commun. 2017;8:1–7.

    Article  ADS  Google Scholar 

  18. Padaki M, Surya Murali R, Abdullah MS, Misdan N, Moslehyani A, Kassim MA, et al. Membrane technology enhancement in oil-water separation. A review. Desalination. 2015;357:197–207.

    Article  CAS  Google Scholar 

  19. Doshi J, Reneker DH. Electrospinning process and applications of electrospun fibers. Conf Record IAS Annual Meet (IEEE Ind Appl Soc). 1993;3:1698–703.

    Google Scholar 

  20. Li D, Xia Y. Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Lett. 2004;4:933–8.

    Article  CAS  ADS  Google Scholar 

  21. Schoolaert E, Cossu L, Becelaere J, Van Guyse JFR, Tigrine A, Vergaelen M, et al. Nanofibers with a tunable wettability by electrospinning and physical crosslinking of poly(2-n-propyl-2-oxazoline). Mater Des. 2020;192:108747.

    Article  CAS  Google Scholar 

  22. Commarieu B, Paolella A, Daigle JC, Zaghib K. Toward high lithium conduction in solid polymer and polymer–ceramic batteries. Curr Opin Electrochem. 2018;9:56–63.

    Article  CAS  Google Scholar 

  23. Esfandiari N, Kashefi M, Mirjalili M, Afsharnezhad S. Role of silica mid-layer in thermal and chemical stability of hierarchical Fe3O4–SiO2–TiO2 nanoparticles for improvement of lead adsorption: Kinetics, thermodynamic and deep XPS investigation. Mater Sci Eng B Solid State Mater Adv Technol. 2020;262:114690.

    Article  CAS  Google Scholar 

  24. Li J, Zhang X, Lu Y, Linghu K, Wang C, Ma Z, et al. Electrospun fluorinated polyimide/polyvinylidene fluoride composite membranes with high thermal stability for lithium ion battery separator. Adv Fiber Mater. 2022;4:1:108–18.

    Article  CAS  Google Scholar 

  25. Amin SK, Abdallah HAM, Roushdy MH, El-Sherbiny SA. An overview of production and development of ceramic membranes. Int J Appl Eng Res. 2016;11:7708–21.

    Google Scholar 

  26. Li JJ, Zhou YN, Jiang ZD, Luo ZH. Electrospun fibrous mat with pH-switchable superwettability that can separate layered oil/water mixtures. Langmuir. 2016;32:13358–66.

    Article  CAS  PubMed  Google Scholar 

  27. Swanckaert B, Verschatse O, Loccufier E, De Buysser K, Daelemans L, De Clerck K. Chemical and structural induced ductile-to-brittle transition in electrospun silica nanofiber membranes. Ceram Int. 2023;49:33305.

    Article  CAS  Google Scholar 

  28. Geltmeyer J, Van Der Schueren L, Goethals F, De Buysser K, De Clerck K. Optimum sol viscosity for stable electrospinning of silica nanofibres. J Solgel Sci Technol. 2013;67:188–95.

    Article  CAS  Google Scholar 

  29. Geltmeyer J, De Roo J, Van den Broeck F, Martins JC, De Buysser K, De Clerck K. The influence of tetraethoxysilane sol preparation on the electrospinning of silica nanofibers. J Solgel Sci Technol. 2016;77:453–62.

    Article  CAS  Google Scholar 

  30. Verschatse O, Loccufier E, Swanckaert B, De Clerck K, Daelemans L. Microscale and macroscale deformation behavior of electrospun polymeric nanofiber membranes using in situ sem during mechanical testing. Polym (Basel). 2023;15:1630.

    Article  CAS  Google Scholar 

  31. Lee SW, Kim YU, Choi SS, Park TY, Joo YL, Lee SG. Preparation of SiO2/TiO2 composite fibers by sol-gel reaction and electrospinning. Mater Lett. 2007;61:889–93.

    Article  CAS  Google Scholar 

  32. Jia C, Xu Z, Luo D, Xiang H, Zhu M. Flexible ceramic fibers: recent development in preparation and application. Adv Fib Mater Springer. 2022;4:573–603.

    Article  CAS  Google Scholar 

  33. Chen X, Cao H, He Y, Zhou Q, Li Z, Wang W, et al. Advanced functional nanofibers: strategies to improve performance and expand functions. Front Optoelectron. 2022;15:50. 

    Article  Google Scholar 

  34. Loccufier E, Geltmeyer J, Daelemans L, D’hooge DR, De Buysser K, De Clerck K. Silica nanofibrous membranes for the separation of heterogeneous azeotropes. Adv Funct Mater. 2018;28:1–10.

    Article  Google Scholar 

  35. Geltmeyer J, Vancoillie G, Steyaert I, Breyne B, Cousins G, Lava K, et al. Dye modification of nanofibrous silicon oxide membranes for colorimetric HCl and NH3 sensing. Adv Funct Mater. 2016;26:5987–96.

    Article  CAS  Google Scholar 

  36. Zhuravlev LT. The surface chemistry of amorphous silica. Zhuravlev model. Coll Surf A Physicochem Eng Asp. 2000;173:1–38.

    Article  CAS  Google Scholar 

  37. Hooda A, Goyat MS, Pandey JK, Kumar A, Gupta R. A review on fundamentals, constraints and fabrication techniques of superhydrophobic coatings. Prog Org Coat. 2020;142:105557.

    Article  CAS  Google Scholar 

  38. Meng LY, Han S, Jiang N, Meng W. Study on superhydrophobic surfaces of octanol grafted electrospun silica nanofibers. Mater Chem Phys. 2014;148:798–802.

    Article  CAS  Google Scholar 

  39. Guo M, Ding B, Li X, Wang X, Yu J, Wang M. Amphiphobic nanofibrous silica mats with flexible and high-heat-resistant properties. J Phys Chem C. 2010;114:916–21.

    Article  CAS  Google Scholar 

  40. Zhao F, Wang X, Ding B, Lin J, Hu J, Si Y, et al. Nanoparticle decorated fibrous silica membranes exhibiting biomimetic superhydrophobicity and highly flexible properties. RSC Adv. 2011;1:1482–8.

    Article  CAS  ADS  Google Scholar 

  41. Li JJ, Zhou YN, Luo ZH. Polymeric materials with switchable superwettability for controllable oil/water separation: a comprehensive review. Prog Polym Sci. 2018;87:1–33.

    Article  CAS  Google Scholar 

  42. Gao S, Watanabe H, Nakane K, Zhao K. Fabrication and characterization of superhydrophobic and superlipophilic silica nanofibers mats with excellent heat resistance. J Min Metall Sect B. 2016;52:87–92.

    Article  CAS  Google Scholar 

  43. Yao Y, Cao J, Yang M, Li J, Zhao S, Yin W, et al. Exploration of the novel stacked structure and one-step fabrication of electrospun silica microbelts with controllable wettability. RSC Adv. 2013;3:12026.

    Article  CAS  ADS  Google Scholar 

  44. Ahmad NA, Leo CP, Ahmad AL, Ramli WKW. Membranes with great hydrophobicity: a review on preparation and characterization. Sep Purif Rev. 2015;44:109–34.

    Article  CAS  Google Scholar 

  45. Wei Z, Li J, Wang C, Cao J, Yao Y, Lu H, et al. Thermally stable hydrophobicity in electrospun silica/polydimethylsiloxane hybrid fibers. Appl Surf Sci. 2017;392:260–7.

    Article  CAS  ADS  Google Scholar 

  46. Wang L, Zhao Y, Tian Y, Jiang L. A general strategy for the separation of immiscible organic liquids by manipulating the surface tensions of nanofibrous membranes. Angew Chem Int Ed. 2015;54:14732–7.

    Article  CAS  Google Scholar 

  47. Loccufier E, Geltmeyer J, Daelemans L, D’hooge DR, De Buysser K, De Clerck K. Silica nanofibrous membranes for the separation of heterogeneous azeotropes. Adv Funct Mater. 2018;28:1–10.

    Google Scholar 

  48. Shewale PM, Rao AV, Rao AP. Effect of different trimethyl silylating agents on the hydrophobic and physical properties of silica aerogels. Appl Surf Sci. 2008;254:6902–7.

    Article  CAS  ADS  Google Scholar 

  49. Sea BK, Ando K, Kusakabe K, Morooka S. Separation of hydrogen from steam using a SiC-based membrane formed by chemical vapor deposition of triisopropylsilane. J Memb Sci. 1998;146:73–82.

    Article  CAS  Google Scholar 

  50. Roostaie A, Bargozin H, Mohammadiazar S, Ehteshami S. Nanoporous silica aerogel modified by triethylchlorosilane as a new sorbent for the needle-trap extraction. Sep Sci Plus. 2018;1:76–82.

    Article  CAS  Google Scholar 

  51. Wonnacott DM, Patton EV. Hydrolytic stability of aminopropyl stationary phases used in the size-exclusion chromatography of cationic polymers. J Chromatogr A. 1987;389:103–13.

    Article  CAS  Google Scholar 

  52. Arase H, Taniguchi K, Kai T, Murakami K, Adachi Y, Ooyama Y, et al. Hydrophobic modification of SiO2 surface by aminosilane derivatives. Compos Interfaces. 2019;26:15–25.

    Article  CAS  ADS  Google Scholar 

  53. Zhao XS, Lu GQ. Modification of MCM-41 by surface silylation with trimethylchlorosilane and adsorption study. J Phys Chem B. 1998;102:1556–61.

    Article  CAS  Google Scholar 

  54. Nebergall WH, Johnson OH. Some steric effects of the cyclohexyl group in organosilicon compounds. J Am Chem Soc. 1949;71:4022–4.

    Article  CAS  Google Scholar 

  55. Dillon AC, Robinson MB, George SM, Roberts DA. Adsorption and decomposition of diethylgermane on porous silicon surfaces. Surf Sci. 1993;286:L535.

    Article  CAS  ADS  Google Scholar 

  56. Xue Z, Wang S, Lin L, Chen L, Liu M, Feng L, et al. A novel superhydrophilic and underwater superoleophobic hydrogel-coated mesh for oil/water separation. Adv Mater. 2011;23:4270–3.

    Article  CAS  PubMed  Google Scholar 

  57. Gupta RK, Dunderdale GJ, England MW, Hozumi A. Oil/water separation techniques: a review of recent progresses and future directions. J Mater Chem A Mater. 2017;5:16025–58.

    Article  CAS  Google Scholar 

  58. Yong J, Bai X, Yang Q, Hou X, Chen F. Filtration and removal of liquid polymers from water (polymer/water separation) by use of the underwater superpolymphobic mesh produced with a femtosecond laser. J Colloid Interface Sci. 2021;582:1203–12.

    Article  CAS  PubMed  ADS  Google Scholar 

  59. Schoolaert E, Cossu L, Becelaere J, Van Guyse JFR, Tigrine A, Vergaelen M, et al. Nanofibers with a tunable wettability by electrospinning and physical crosslinking of poly(2-n-propyl-2-oxazoline). Mater Des. 2020;192:108747.

    Article  CAS  Google Scholar 

  60. Seyed Shahabadi SM, Brant JA. Bio-inspired superhydrophobic and superoleophilic nanofibrous membranes for non-aqueous solvent and oil separation from water. Sep Purif Technol. 2019;210:587–99.

    Article  CAS  Google Scholar 

  61. Vasanth D, Pugazhenthi G, Uppaluri R. Fabrication and properties of low cost ceramic microfiltration membranes for separation of oil and bacteria from its solution. J Memb Sci. 2011;379:154–63.

    Article  CAS  Google Scholar 

  62. El Mourabit S, Guillot M, Toquer G, Cambedouzou J, Goettmann F, Grandjean A. Stability of mesoporous silica under acidic conditions. RSC Adv. 2012;2:10916–24.

    Article  Google Scholar 

  63. Loccufier E, Deventer K, Manhaeghe D, Van Hulle SWH, D’hooge DR, De Buysser K, et al. Degradation kinetics of isoproturon and its subsequent products in contact with TiO2 functionalized silica nanofibers. Chem Eng J. 2020;387:124143.

    Article  CAS  Google Scholar 

  64. Wang J, Wang L. Superhydrophilic and underwater superoleophobic nanofibrous membrane for separation of oil/water emulsions. J Mater Res. 2020;35:1504–13. https://doi.org/10.1557/jmr.2020.137.

    Article  CAS  ADS  Google Scholar 

  65. Guo Y, Li M, Wen X, Guo X, Zhang T. Silica-modified electrospun membrane with underwater superoleophobicity for effective gravity-driven oil/water separation. Fibers Polym. 2022;23:1906–14. https://doi.org/10.1007/s12221-022-4039-x.

    Article  CAS  Google Scholar 

  66. Su Y, Fan T, Cui W, Li Y, Ramakrishna S, Long Y. Advanced electrospun nanofibrous materials for efficient oil/water separation. Adv Fiber Mater. 2022;4:5:938–958.

    Article  Google Scholar 

  67. Oh S, Bang J, Jin HJ, Kwak HW. Green fabrication of underwater superoleophobic biopolymeric nanofibrous membranes for effective oil–water separation. Adv Fiber Mater. 2023. https://doi.org/10.1007/s42765-022-00251-7.

    Article  Google Scholar 

  68. Luzar A, Svetina S, Žekš B. The contribution of hydrogen bonds to the surface tension of water. Chem Phys Lett. 1983;6:4:85–490.

    Article  Google Scholar 

  69. Vazquez G, Alvarez E, Navaza JM. Surface tension of alcohol + water from 20 to 50 °C. J Chem Eng Data. 1995;40:611–4.

    Article  CAS  Google Scholar 

  70. Howard KS, McAllister RA. Surface tension of acetone-water solutions up to their normal boiling points. AIChE J. 1958;4:362–6.

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

M.L. appreciates funding from the China Scholarship Council (Grant No. 201608230115) for the Ph.D. study at Ghent University. This Research Foundation Flanders (FWO) is gratefully acknowledged by E.L. for funding the research through an SB PhD grant under Grant No. 1S82920N. The authors would like to thank the NMR expertise centre (Ghent University) for providing support and access to its NMR infrastructure. The 300 MHz used in this work has been funded by grants from the FWO. K.D.C. thanks the Special Research Fund Ghent University (BOF) for the grants BOF.BAS.2018.0015.01 and BOF19/24J/102. The authors would like to thank Prof. Dolores Esquivel from the University of Cordoba for making possible the 29Si solid-state NMR measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen De Clerck.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1466 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Loccufier, E., Geltmeyer, J. et al. Playing with Chlorine-Based Post-modification Strategies for Manufacturing Silica Nanofibrous Membranes Acting as Stable Hydrophobic Separation Barriers. Adv. Fiber Mater. 6, 145–157 (2024). https://doi.org/10.1007/s42765-023-00335-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-023-00335-y

Keywords

Navigation