Skip to main content
Log in

Template-Assisted Fabrication of Single-Crystal-Like Polymer Fibers for Efficient Charge Transport

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Polymer semiconductors with highly crystalline forms, such as crystalline nanowires and fibers, are critical for charge carrier transport in organic field-effect transistors (OFET). However, the highly crystalline form usually requires high-quality molecular orderliness, which still remains a great challenge, especially in single fibers of extremely high-molecular-weight semiconducting polymers. In this study, we present an anodic aluminum oxide (AAO) template-assisted method to fabricate highly crystalline N-alkyl diketopyrrolopyrrole dithienylthieno[3,2-b]thiophene (DPP-DTT) single fibers. Grazing-incidence X-ray diffraction and selected area electron diffraction show obvious diffraction patterns for single-crystal-like characteristics, indicating the highly ordered molecular chains and highly crystalline structures of the single DPP-DTT fibers. OFET based on the single-crystal-like DPP-DTT fiber exhibits the highest charge carrier mobility of up to 14.2 cm2 V−1 s−1 and an average mobility of approximately 7.8 cm2 V−1 s−1, which is significantly improved compared with DPP-DTT thin film-based devices. Besides, the fiber-based OFET also exhibit a high light responsivity of 4.0 × 103 A W−1. This work demonstrates a facile and effective method for fabricating single-crystal-like fibers of high-molecular-weight polymer semiconductors and corresponding high-performance OFET devices. Furthermore, it also expands application of AAO template method for achieving crystalline semiconducting polymer fibers and provide a new perspective for the study on polymer crystallization.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author on reasonable request.

References

  1. Facchetti A. Semiconductors for organic transistors. Mater Today. 2007;10:28.

    Article  CAS  Google Scholar 

  2. Klauk H. Organic thin-film transistors. Chem Soc Rev. 2010;39:2643.

    Article  CAS  Google Scholar 

  3. Sun YM, Liu YQ, Zhu DB. Advances in organic field-effect transistors. J Mater Chem. 2005;15:53.

    Article  CAS  Google Scholar 

  4. Katz HE. Recent advances in semiconductor performance and printing processes for organic transistor-based electronics. Chem Mater. 2004;16:4748.

    Article  CAS  Google Scholar 

  5. Briseno AL, Mannsfeld SCB, Ling MM, Liu SH, Tseng RJ, Reese C, Roberts ME, Yang Y, Wudl F, Bao ZN. Patterning organic single-crystal transistor arrays. Nature. 2006;444:913.

    Article  CAS  Google Scholar 

  6. Chai Z, Abbasi SA, Busnaina AA. Scalable directed assembly of highly crystalline 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) films. ACS Appl Mater Interfaces. 2018;10:18123.

    Article  CAS  Google Scholar 

  7. Zhao Y, Di CA, Gao XK, Hu YB, Guo YL, Zhang L, Liu YQ, Wang JZ, Hu WP, Zhu DB. All-solution-processed, high-performance n-channel organic transistors and circuits: toward low-cost ambient electronics. Adv Mater. 2011;23:2448.

    Article  CAS  Google Scholar 

  8. Wang CL, Dong HL, Hu WP, Liu YQ, Zhu DB. Semiconducting π-conjugated systems in field-effect transistors: a material odyssey of organic electronics. Chem Rev. 2012;112:2208.

    Article  CAS  Google Scholar 

  9. Yan H, Chen ZH, Zheng Y, Newman C, Quinn JR, Dotz F, Kastler M, Facchetti A. A high-mobility electron-transporting polymer for printed transistors. Nature. 2009;457:679.

    Article  CAS  Google Scholar 

  10. Sirringhaus H, Kawase T, Friend RH, Shimoda T, Inbasekaran M, Wu W, Woo EP. High-resolution inkjet printing of all-polymer transistor circuits. Science. 2000;290:2123.

    Article  CAS  Google Scholar 

  11. Liu JY, Zhang R, Sauve G, Kowalewski T, McCullough RD. Highly disordered polymer field effect transistors: N-alkyl dithieno 3,2-b:2’,3’-d pyrrole-based copolymers with surprisingly high charge carrier mobilities. J Am Chem Soc. 2008;130:13167.

    Article  CAS  Google Scholar 

  12. Fan J, Yuen JD, Cui WB, Seifter J, Mohebbi AR, Wang MF, Zhou HQ, Heeger A, Wudl F. High-hole-mobility field-effect transistors based on co-benzobisthiadiazole-quaterthiophene. Adv Mater. 2012;24:6164.

    Article  CAS  Google Scholar 

  13. Tsao HN, Cho D, Andreasen JW, Rouhanipour A, Breiby DW, Pisula W, Mullen K. The influence of morphology on high-performance polymer field-effect transistors. Adv Mater. 2009;21:209.

    Article  CAS  Google Scholar 

  14. Ong BS, Wu YL, Li YN, Liu P, Pan HL. Thiophene polymer semiconductors for organic thin-film transistors. Chem Eur J. 2008;14:4766.

    Article  CAS  Google Scholar 

  15. Tsao HN, Mullen K. Improving polymer transistor performance via morphology control. Chem Soc Rev. 2010;39:2372.

    Article  CAS  Google Scholar 

  16. Lei T, Dou JH, Pei J. Influence of alkyl chain branching positions on the hole mobilities of polymer thin-film transistors. Adv Mater. 2012;24:6457.

    Article  CAS  Google Scholar 

  17. Hamadani BH, Gundlach DJ, McCulloch I, Heeney M. Undoped polythiophene field-effect transistors with mobility of 1 cm2 V−1 s−1. Appl Phys Lett. 2007;91: 243512.

    Article  Google Scholar 

  18. Zhao WQ, Jie JS, Wei Q, Lu ZJ, Jia RF, Deng W, Zhang XJ, Zhang XH. A facile method for the growth of organic semiconductor single crystal arrays on polymer dielectric toward flexible field-effect transistors. Adv Funct Mater. 2019;29:1902494.

    Article  Google Scholar 

  19. Park Y, Jung JW, Kang H, Seth J, Kang Y, Sung MM. Single-crystal poly[4-(4,4-dihexadecyl-4h-cyclopenta[1,2-b:5,4-b’]dithiophen-2-yl)-alt-[1,2,5]thiadiazolo[3,4- c]pyridine] nanowires with ultrahigh mobility. Nano Lett. 2019;19:1028.

    Article  CAS  Google Scholar 

  20. Ren H, Cui N, Tang QX, Tong YH, Zhao XL, Liu YC. High-performance, ultrathin, ultraflexible organic thin-film transistor array via solution process. Small. 2018;14:1801020.

    Article  Google Scholar 

  21. Li YN, Sonar P, Singh SP, Soh MS, van Meurs M, Tan J. Annealing-free high-mobility diketopyrrolopyrrole-quaterthiophene copolymer for solution-processed organic thin film transistors. J Am Chem Soc. 2011;133:2198.

    Article  CAS  Google Scholar 

  22. Yi ZR, Sun XN, Zhao Y, Guo YL, Chen XG, Qin JG, Yu G, Liu YQ. Diketopyrrolopyrrole-based π-conjugated copolymer containing beta-unsubstituted quintetthiophene unit: a promising material exhibiting high hole-mobility for organic thin-film transistors. Chem Mater. 2012;24:4350.

    Article  CAS  Google Scholar 

  23. Suna Y, Nishida J, Fujisaki Y, Yamashita Y. Ambipolar behavior of hydrogen-bonded diketopyrrolopyrrole thiophene co-oligomers formed from their soluble precursors. Org Lett. 2012;14:3356.

    Article  CAS  Google Scholar 

  24. Hong W, Sun B, Aziz H, Park WT, Noh YY, Li YN. A conjugated polyazine containing diketopyrrolopyrrole for ambipolar organic thin film transistors. Chem Commun. 2012;48:8413.

    Article  CAS  Google Scholar 

  25. Sonar P, Foong TRB, Singh SP, Li YN, Dodabalapur A. A furan-containing conjugated polymer for high mobility ambipolar organic thin film transistors. Chem Commun. 2012;48:8383.

    Article  CAS  Google Scholar 

  26. Suraru SL, Zschieschang U, Klauk H, Wuerthner F. Diketopyrrolopyrrole as a p-channel organic semiconductor for high performance OTFTs. Chem Commun. 2011;47:1767.

    Article  CAS  Google Scholar 

  27. Chen HJ, Guo YL, Yu G, Zhao Y, Zhang J, Gao D, Liu HT, Liu YQ. Highly p-extended copolymers with diketopyrrolopyrrole moieties for high-performance field-effect transistors. Adv Mater. 2012;24:4618.

    Article  CAS  Google Scholar 

  28. Sonar P, Singh SP, Li YN, Soh MS, Dodabalapur A. A Low-bandgap diketopyrrolopyrrole-benzothiadiazole-based copolymer for high-mobility ambipolar organic thin-film transistors. Adv Mater. 2010;22:5409.

    Article  CAS  Google Scholar 

  29. Wu PT, Kim FS, Jenekhe SA. New poly(arylene vinylene)s based on diketopyrrolopyrrole for ambipolar transistors. Chem Mater. 2011;23:4618.

    Article  CAS  Google Scholar 

  30. Li J, Zhao Y, Tan HS, Guo YL, Di CA, Yu G, Liu YQ, Lin M, Lim SH, Zhou YH, Su HB, Ong BS. A stable solution-processed polymer semiconductor with record high-mobility for printed transistors. Sci Rep. 2012;2:754.

    Article  Google Scholar 

  31. Chen ZY, Lee MJ, Ashraf RS, Gu Y, Albert-Seifried S, Nielsen MM, Schroeder B, Anthopoulos TD, Heeney M, McCulloch I, Sirringhaus H. High-performance ambipolar diketopyrrolopyrrole-thieno 3,2-b thiophene copolymer field-effect transistors with balanced hole and electron mobilities. Adv Mater. 2012;24:647.

    Article  CAS  Google Scholar 

  32. Huang ZT, Fan CC, Xue GB, Wu JK, Liu S, Li HB, Chen HZ, Li HY. Solution-grown aligned crystals of diketopyrrolopyrroles (DPP)-based small molecules: Rough surfaces and relatively low charge mobility. Chin Chem Lett. 2016;27:523.

    Article  CAS  Google Scholar 

  33. Kim K, Kim C, Jo Y, Tang X, Lee JH, Kwon H-J, Lee J, Kim SH, An TK. Boosting the ambipolar field-effect transistor performance of a DPP-based copolymer via electrohydrodynamic-jet direct writing. J Ind Eng Chem. 2019;78:172.

    Article  CAS  Google Scholar 

  34. Virkar AA, Mannsfeld S, Bao ZN, Stingelin N. Organic semiconductor growth and morphology considerations for organic thin-film transistors. Adv Mater. 2010;22:3857.

    Article  CAS  Google Scholar 

  35. Li ML, Jiang TC, Wang XG, Chen HL, Li S, Wei F, Ren ZJ, Yan SK, Guo XF, Tu HL. Preparation of highly oriented single crystal arrays of C8-BTBT by epitaxial growth on oriented isotactic polypropylene. J Mater Chem C. 2020;8:2155.

    Article  CAS  Google Scholar 

  36. Zhao YY, Fan XY, Feng JG, Wang XD, Wu YC, Su B, Jiang L. Regulated dewetting for patterning organic single crystals with pure crystallographic orientation toward high performance field-effect transistors. Adv Funct Mater. 2018;28:1800470.

    Article  Google Scholar 

  37. Son SY, Kim Y, Lee J, Lee GY, Park WT, Noh YY, Park CE, Park T. high-field-effect mobility of low-crystallinity conjugated polymers with localized aggregates. J Am Chem Soc. 2016;138:8096.

    Article  CAS  Google Scholar 

  38. Li YL, Tatum WK, Onorato JW, Zhang Y, Luscombe CK. Low elastic modulus and high charge mobility of low-crystallinity indacenodithiophene-based semiconducting polymers for potential applications in stretchable electronics. Macromolecules. 2018;51:6352.

    Article  CAS  Google Scholar 

  39. Mun J, Ochiai Y, Wang W, Zheng Y, Zheng YQ, Wu HC, Matsuhisa N, Higashihara T, Tok JB, Yun Y, Bao Z. A design strategy for high mobility stretchable polymer semiconductors. Nat Commun. 2021;12:3572.

    Article  CAS  Google Scholar 

  40. Yao YF, Dong HL, Hu WP. Charge transport in organic and polymeric semiconductors for flexible and stretchable devices. Adv Mater. 2016;28:4513.

    Article  CAS  Google Scholar 

  41. Noriega R, Rivnay J, Vandewal K, Koch FP, Stingelin N, Smith P, Toney MF, Salleo A. A general relationship between disorder, aggregation and charge transport in conjugated polymers. Nat Mater. 2013;12:1038.

    Article  CAS  Google Scholar 

  42. Sirringhaus H, Brown PJ, Friend RH, Nielsen MM, Bechgaard K, Langeveld-Voss BMW, Spiering AJH, Janssen RAJ, Meijer EW, Herwig P, de Leeuw DM. Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature. 1999;401:685.

    Article  CAS  Google Scholar 

  43. Kim YJ, Jung HT, Ahn CW, Jeon HJ. Simultaneously induced self-assembly of poly(3-hexylthiophene) (P3HT) nanowires and thin-film fabrication via solution-floating method on a water substrate. Adv Mater Interfaces. 2017;4:1700342.

    Article  Google Scholar 

  44. Xi YY, Wolf CM, Pozzo LD. Self-assembly of donor-acceptor conjugated polymers induced by miscible “poor” solvents. Soft Matter. 2019;15:1799.

    Article  CAS  Google Scholar 

  45. Yao ZF, Zheng YQ, Dou JH, Lu Y, Ding YF, Ding L, Wang JY, Pei J. Approaching crystal structure and high electron mobility in conjugated polymer crystals. Adv Mater. 2021;33:2006794.

    Article  CAS  Google Scholar 

  46. Zheng YQ, Yao ZF, Dou JH, Wang Y, Ma W, Zou L, Nikzad S, Li QY, Sun ZH, Yu ZA, Zhang WB, Wang JY, Pei J. Influence of solution-state aggregation on conjugated polymer crystallization in thin films and microwire crystals. Giant. 2021;7: 100064.

    Article  CAS  Google Scholar 

  47. Canesi EV, Luzio A, Saglio B, Bianco A, Caironi M, Bertarelli C. n-Type semiconducting polymer fibers. ACS Macro Lett. 2012;1:366.

    Article  CAS  Google Scholar 

  48. Wang SH, Pisula W, Mullen K. Nanofiber growth and alignment in solution processed n-type naphthalene-diimide-based polymeric field-effect transistors. J Mater Chem. 2012;22:24827.

    Article  CAS  Google Scholar 

  49. Dong HL, Jiang SD, Jiang L, Liu YL, Li HX, Hu WP, Wang EJ, Yan SK, Wei ZM, Xu W, Gong X. Nanowire crystals of a rigid rod conjugated polymer. J Am Chem Soc. 2009;131:17315.

    Article  CAS  Google Scholar 

  50. Wang SH, Kappl M, Liebewirth I, Muller M, Kirchhoff K, Pisula W, Mullen K. Organic field-effect transistors based on highly ordered single polymer fibers. Adv Mater. 2012;24:417.

    Article  CAS  Google Scholar 

  51. Zhao K, Khan HU, Li R, Su Y, Amassian A. Entanglement of conjugated polymer chains influences molecular self-assembly and carrier transport. Adv Funct Mater. 2013;23:6024.

    Article  CAS  Google Scholar 

  52. Huang JX, Kaner RB. A general chemical route to polyaniline nanofibers. J Am Chem Soc. 2004;126:851.

    Article  CAS  Google Scholar 

  53. Zhang XT, Zhang J, Song WH, Liu ZF. Controllable synthesis of conducting polypyrrole nanostructures. J Phys Chem B. 2006;110:1158.

    Article  CAS  Google Scholar 

  54. Maynor BW, Filocamo SF, Grinstaff MW, Liu J. Direct-writing of polymer nanostructures: poly(thiophene) nanowires on semiconducting and insulating surfaces. J Am Chem Soc. 2002;124:522.

    Article  CAS  Google Scholar 

  55. Li D, Xia YN. Electrospinning of nanofibers: reinventing the wheel? Adv Mater. 2004;16:1151.

    Article  CAS  Google Scholar 

  56. Liu CH, Zapien JA, Yao Y, Meng XM, Lee CS, Fan SS, Lifshitz Y, Lee ST. High-density, ordered ultraviolet light-emitting ZnO nanowire arrays. Adv Mater. 2003;15:838.

    Article  CAS  Google Scholar 

  57. Kim J, Lee DH, Kim JH, Choi SH. Graphene-assisted chemical etching of silicon using anodic aluminum oxides as patterning templates. ACS Appl Mater Interfaces. 2015;7:24242.

    Article  CAS  Google Scholar 

  58. Zaraska L, Sulka GD, Jaskula M. Porous anodic alumina membranes formed by anodization of AA1050 alloy as templates for fabrication of metallic nanowire arrays. Surf Coat Technol. 2010;205:2432.

    Article  CAS  Google Scholar 

  59. Liu GM, Muller AJ, Wang DJ. Confined crystallization of polymers within nanopores. Acc Chem Res. 2021;54:3028.

    Article  CAS  Google Scholar 

  60. Sangroniz L, Wang B, Su YL, Liu GM, Cavallo D, Wang DJ, Müller AJ. Fractionated crystallization in semicrystalline polymers. Prog Polym Sci. 2021;115: 101376.

    Article  CAS  Google Scholar 

  61. Baek S, Park JB, Lee W, Han SH, Lee J, Lee SH. A facile method to prepare regioregular poly(3-hexylthiophene) nanorod arrays using anodic aluminium oxide templates and capillary force. New J Chem. 2009;33:986.

    Article  CAS  Google Scholar 

  62. Chen D, Zhao W, Russell TP. P3HT nanopillars for organic photovoltaic devices nanoimprinted by AAO templates. ACS Nano. 2012;6:1479.

    Article  CAS  Google Scholar 

  63. Zhai L, Khondaker SI, Thomas J, Shen C, McInnis M. Ordered conjugated polymer nano- and microstructures: structure control for improved performance of organic electronics. Nano Today. 2014;9:705.

    Article  CAS  Google Scholar 

  64. Hu J, Shirai Y, Han L, Wakayama Y. Template method for fabricating interdigitate p-n heterojunction for organic solar cell. Nanoscale Res Lett. 2012;7:469.

    Article  Google Scholar 

  65. Zhao Y, Zhao XK, Zang YP, Di CA, Diao Y, Mei JG. Conjugation-break spacers in semiconducting polymers: impact on polymer processability and charge transport properties. Macromolecules. 2015;48:2048.

    Article  CAS  Google Scholar 

  66. Chen ZH, Zheng Y, Yan H, Facchetti A. Naphthalenedicarboximide- vs perylenedicarboximide-based copolymers. Synthesis and semiconducting properties in bottom-gate N-channel organic transistors. J Am Chem Soc. 2009;131:8.

    Article  CAS  Google Scholar 

  67. Hamilton MC, Martin S, Kanicki J. Thin-film organic polymer phototransistors. IEEE Trans Electron Devices. 2004;51:877.

    Article  CAS  Google Scholar 

  68. Koch FPV, Rivnay J, Foster S, Müller C, Downing JM, Buchaca-Domingo E, Westacott P, Yu L, Yuan M, Baklar M, Fei Z, Luscombe C, McLachlan MA, Heeney M, Rumbles G, Silva C, Salleo A, Nelson J, Smith P, Stingelin N. The impact of molecular weight on microstructure and charge transport in semicrystalline polymer semiconductors–poly(3-hexylthiophene), a model study. Prog Polym Sci. 1978;2013:38.

    Google Scholar 

  69. Pei DD, Wang ZL, Peng ZX, Zhang JD, Deng YF, Han Y, Ye L, Geng YH. Impact of molecular weight on the mechanical and electrical properties of a high-mobility diketopyrrolopyrrole-based conjugated polymer. Macromolecules. 2020;53:4490.

    Article  CAS  Google Scholar 

  70. Yao ZF, Li QY, Wu HT, Ding YF, Wang ZY, Lu Y, Wang JY, Pei J. Building crystal structures of conjugated polymers through X-ray diffraction and molecular modeling. SmartMat. 2021;2:378.

    Article  CAS  Google Scholar 

  71. Tang QX, Tong YH, Li HX, Ji ZY, Li LQ, Hu WP, Liu YQ, Zhu DB. High-performance air-stable bipolar field-effect transistors of organic single-crystalline ribbons with an air-gap dielectric. Adv Mater. 2008;20:1511.

    Article  CAS  Google Scholar 

  72. Lv AF, Puniredd SR, Zhang JH, Li ZB, Zhu HF, Jiang W, Dong HL, He YD, Jiang L, Li Y, Pisula W, Meng Q, Hu WP, Wang ZH. High mobility, air stable, organic single crystal transistors of an n-type diperylene bisimide. Adv Mater. 2012;24:2626.

    Article  CAS  Google Scholar 

  73. Choi HH, Cho K, Frisbie CD, Sirringhaus H, Podzorov V. Critical assessment of charge mobility extraction in FETs. Nat Mater. 2017;17:2.

    Article  Google Scholar 

  74. Lu ZJ, Deng W, Fang XC, Xiao J, Lu B, Zhang XW, Pirzado AAA, Jie JS, Zhang XJ. Wafer-scale growth of aligned C60 single crystals via solution-phase epitaxy for high-performance transistors. Adv Funct Mater. 2021;31:2105459.

    Article  CAS  Google Scholar 

  75. Ren XB, Lu ZJ, Zhang XJ, Grigorian S, Deng W, Jie JS. Low-voltage organic field-effect transistors: challenges, progress, and prospects. ACS Mater Lett. 2022;4:1531.

    Article  CAS  Google Scholar 

  76. Prins P, Grozema FC, Schins JM, Patil S, Scherf U, Siebbeles LDA. High intrachain hole mobility on molecular wires of ladder-type poly(p-phenylenes). Phys Rev Lett. 2006;96:6601.

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (Grant No. 61890940, 51903051), the Natural Science Foundation of Shanghai (Grant 22ZR1407800). The authors thank beamline BL14B1 of the Shanghai Synchrotron Radiation Facility (SSRF, China) for providing the beam time and helps during experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Zhao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3526 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Wu, Y., Yang, L. et al. Template-Assisted Fabrication of Single-Crystal-Like Polymer Fibers for Efficient Charge Transport. Adv. Fiber Mater. 5, 2069–2079 (2023). https://doi.org/10.1007/s42765-023-00326-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-023-00326-z

Keywords

Navigation