Skip to main content

Advertisement

Log in

Electrospinning Technique Meets Solar Energy: Electrospun Nanofiber-Based Evaporation Systems for Solar Steam Generation

  • Review
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

The huge gap between inadequate clean water supply and demanding human needs can be narrowed by sustainable and green methods of solar-driven evaporation, which effectively converts solar energy into thermal energy to purify seawater and wastewater. Electrospun materials produced from a facile electrospinning technique can be combined with functional photothermal materials, giving rise to various superior advantages in solar water evaporation. However, to date, few reviews have focused on this topic. This article reviews the recent progress of electrospun nanofiber-based evaporation systems focusing on polymer selection, available solar materials, incorporation strategies of solar materials, system configurations, factors influencing the performance, and applications of electrospun nanofiber evaporation systems. The incorporation strategies of solar materials and system configurations in electrospun nanofiber evaporators are classified and systematically discussed. Finally, the challenges and perspectives of the electrospun nanofiber evaporation systems are also presented. This review updates the progress of electrospun nanofiber evaporation systems and simultaneously stimulates attractive research on designing electrospun nanofiber-based photothermal systems for applications in solar water evaporation, photothermal therapy, electricity generation, and other related areas.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

Data are available on request.

References

  1. Bain R, Johnston R, Mitis F, Chatterley C, Slaymaker T. Establishing sustainable development goal baselines for household drinking water, sanitation and hygiene services. Water-Sui. 2018;10:1711.

    Google Scholar 

  2. Zhang Q, Hu R, Chen Y, Xiao X, Zhao G, Yang H, Li J, Xu W, Wang X. Banyan-inspired hierarchical evaporators for efficient solar photothermal conversion. Appl Energy. 2020;276: 115545.

    CAS  Google Scholar 

  3. Eltawil MA, Alamri AM, Azam MM. Design a novel air to water pressure amplifier powered by PV system for reverse osmosis desalination. Renew Sustain Energy Rev. 2022;160: 112295.

    Google Scholar 

  4. Ding T, Zhou Y, Ong WL, Ho GW. Hybrid solar-driven interfacial evaporation systems: beyond water production towards high solar energy utilization. Mater Today. 2021;42:178–91.

    CAS  Google Scholar 

  5. Ali N, Abbas S, Cao Y, Fazal H, Zhu J, Lai CW, Zai J, Qian X. Low cost, robust, environmentally friendly, wood supported 3D-hierarchical Cu3SnS4 for efficient solar powered steam generation. J Colloid Interf Sci. 2022;615:707–15.

    CAS  Google Scholar 

  6. Liu Y, Liu H, Xiong J, Li A, Wang R, Wang L, Qin X, Yu J. Bioinspired design of electrospun nanofiber based aerogel for efficient and cost-effective solar vapor generation. Chem Eng J. 2022;427: 131539.

    CAS  Google Scholar 

  7. Peng B, Lyu Q, Li M, Du S, Zhu J, Zhang L. Phase-separated polyzwitterionic hydrogels with tunable sponge-like structures for stable solar steam generation. Adv Funct Mater 2023:2214045.

  8. Lu Y, Fan D, Shen Z, Zhang H, Xu H, Yang X. Design and performance boost of a MOF-functionalized-wood solar evaporator through tuning the hydrogen-bonding interactions. Nano Energy. 2022;95: 107016.

    CAS  Google Scholar 

  9. Dong Y, Tan Y, Wang K, Cai Y, Li J, Sonne C, Li C. Reviewing wood-based solar-driven interfacial evaporators for desalination. Water Res. 2022;223: 119011.

    CAS  Google Scholar 

  10. Shi C, Zhang X, Nilghaz A, Wu Z, Wang T, Zhu B, Tang G, Su B, Tian J. Large-scale production of spent coffee ground-based photothermal materials for high-efficiency solar-driven interfacial evaporation. Chem Eng J. 2023;455: 140361.

    CAS  Google Scholar 

  11. Fillet R, Nicolas V, Celzard A, Fierro V. Solar evaporation performance of 3D-printed concave structures filled with activated carbon under low convective flow. Chem Eng J. 2023;457: 141168.

    CAS  Google Scholar 

  12. Kanjwal MA, Ghaferi AA. Hybrid nanofibers opportunities and frontiers-A review. J Environ Chem Eng. 2022;10: 108850.

    CAS  Google Scholar 

  13. Ding Q, Guan C, Li H, Shi M, Yang W, Yan H, Zuo X, An Y, Ramakrishna S, Mohankumar P. Solar-driven interfacial evaporation based on double-layer polylactic acid fibrous membranes loading Chinese ink nanoparticles. Sol Energy. 2020;195:636–43.

    CAS  Google Scholar 

  14. Fan X, Lv B, Xu Y, Huang H, Yang Y, Wang Y, Xiao J, Song C. Electrospun reduced graphene oxide/polyacrylonitrile membrane for high-performance solar evaporation. Sol Energy. 2020;209:325–33.

    CAS  Google Scholar 

  15. Chala TF, Wu CM, Chou MH, Guo ZL. Melt electrospun reduced tungsten oxide/polylactic acid fiber membranes as a photothermal material for light-driven interfacial water evaporation. ACS Appl Mater Interfaces. 2018;10:28955–62.

    CAS  Google Scholar 

  16. Wu D, Liang J, Zhang D, Zhang C, Zhu H. Solar evaporation and electricity generation of porous carbonaceous membrane prepared by electrospinning and carbonization. Sol Energy Mater Sol C. 2020;215: 110591.

    CAS  Google Scholar 

  17. Yan J, Xiao W, Chen L, Wu Z, Gao J, Xue H. Superhydrophilic carbon nanofiber membrane with a hierarchically macro/meso porous structure for high performance solar steam generators. Desalination. 2021;516: 115224.

    CAS  Google Scholar 

  18. Xu W, Hu X, Zhuang S, Wang Y, Li X, Zhou L, Zhu S, Zhu J. Flexible and salt resistant Janus absorbers by electrospinning for stable and efficient solar desalination. Adv Energy Mater. 2018;8:1702884.

    Google Scholar 

  19. Mirzazadeh Z, Sherafat Z, Bagherzadeh E. Physical and mechanical properties of PVDF/KNN composite produced via hot compression molding. Ceram Int. 2021;47:6211–9.

    CAS  Google Scholar 

  20. Ke G, Jin X, Hu H. Electrospun polyvinylidene fluoride/polyacrylonitrile composite fibers: fabrication and characterization. Iran Polym J. 2020;29:37–46.

    CAS  Google Scholar 

  21. Wu T, Li H, Xie M, Shen S, Wang W, Zhao M, Mo X, Xia Y. Incorporation of gold nanocages into electrospun nanofibers for efficient water evaporation through photothermal heating. Mater Today Energy. 2019;12:129–35.

    Google Scholar 

  22. Zhao J, Huang Q, Gao S, Piao H, Quan Q, Xiao C. In situ photo-thermal conversion nanofiber membrane consisting of hydrophilic PAN layer and hydrophobic PVDF-ATO layer for improving solar-thermal membrane distillation. J Membrane Sci. 2021;635: 119500.

    CAS  Google Scholar 

  23. Li H, Wen H, Li J, Huang J, Wang D, Tang BZ. Doping AIE photothermal molecule into all-fiber aerogel with self-pumping water function for efficiency solar steam generation. ACS Appl Mater Interfaces. 2020;12:26033–40.

    CAS  Google Scholar 

  24. Gao T, Li Y, Chen C, Yang Z, Kuang Y, Jia C, Song J, Hitz EM, Liu B, Huang H. Architecting a floatable, durable, and scalable steam generator: hydrophobic/hydrophilic bifunctional structure for solar evaporation enhancement. Small Methods. 2019;3:1800176.

    Google Scholar 

  25. Tsai YT, Maggay IV, Venault A, Lin Y. Fluorine-free and hydrophobic/oleophilic PMMA/PDMS electrospun nanofibrous membranes for gravity-driven removal of water from oil-rich emulsions. Sep Purif Technol. 2021;279: 119720.

    CAS  Google Scholar 

  26. Valipour P, Babaahmadi V, Nasouri K. Fabrication of poly (methyl methacrylate) nanofibers and polyethylene nonwoven with sandwich structures for thermal insulator application. Adv Polym Tech. 2014;33:21440.

    Google Scholar 

  27. Dong X, Cao L, Si Y, Ding B, Deng H. Cellular structured CNTs@SiO2 nanofibrous aerogels with vertically aligned vessels for salt-resistant solar desalination. Adv Mater. 2020;32:1908269.

    CAS  Google Scholar 

  28. Wu S, Chen H, Wang H, Chen X, Yang H, Darling SB. Solar-driven evaporators for water treatment: challenges and opportunities. Environ Sci: Water Res Technol. 2021;7:24–39.

    CAS  Google Scholar 

  29. Li H, Yan Z, Li Y, Hong W. Latest development in salt removal from solar-driven interfacial saline water evaporators: advanced strategies and challenges. Water Res. 2020;177: 115770.

    CAS  Google Scholar 

  30. Guan W, Guo Y, Yu G. Carbon materials for solar water evaporation and desalination. Small. 2021;17:2007176.

    CAS  Google Scholar 

  31. Zhu B, Kou H, Liu Z, Wang Z, Macharia DK, Zhu M, Wu B, Liu X, Chen Z. Flexible and washable CNT-embedded PAN nonwoven fabrics for solar-enabled evaporation and desalination of seawater. ACS Appl Mater Interfaces. 2019;11:35005–14.

    CAS  Google Scholar 

  32. Qi Q, Wang W, Wang Y, Yu D. Robust light-driven interfacial water evaporator by electrospinning SiO2/MWCNTs-COOH/PAN photothermal fiber membrane. Sep Purif Technol. 2020;239: 116595.

    CAS  Google Scholar 

  33. Jin Y, Chang J, Shi Y, Shi L, Hong S, Wang P. A highly flexible and washable nonwoven photothermal cloth for efficient and practical solar steam generation. J Mater Chem A. 2018;6:7942–9.

    CAS  Google Scholar 

  34. Chen F, Xu L, Tian Y, Caratenuto A, Liu X, Zheng Y. Electrospun polycaprolactone nanofiber composites with embedded carbon nanotubes/nanoparticles for photothermal absorption. ACS Appl Nano Mater. 2021;4:5230–9.

    CAS  Google Scholar 

  35. Li D, Zhang X, Zhang S, Wang D, Wang Z, Liu Y, Yu X, Zhao Q, Xing B. A flexible and salt-rejecting electrospun film-based solar evaporator for economic, stable and efficient solar desalination and wastewater treatment. Chemosphere. 2021;267: 128916.

    CAS  Google Scholar 

  36. Guo X, Gao H, Wang S, Yin L, Dai Y. Scalable, flexible and reusable graphene oxide-functionalized electrospun nanofibrous membrane for solar photothermal desalination. Desalination. 2020;488: 114535.

    CAS  Google Scholar 

  37. Chen Z, Dang B, Luo X, Li W, Li J, Yu H, Liu S, Li S. Deep eutectic solvent-assisted in situ wood delignification: a promising strategy to enhance the efficiency of wood-based solar steam generation devices. ACS Appl Mater Interfaces. 2019;11:26032–7.

    CAS  Google Scholar 

  38. Liu C, Hong K, Sun X, Natan A, Luan P, Yang Y, Zhu H. An ‘antifouling’ porous loofah sponge with internal microchannels as solar absorbers and water pumpers for thermal desalination. J Mater Chem A. 2020;8:12323–33.

    CAS  Google Scholar 

  39. Guo M, Wu J, Li F, Guo Q, Fan H, Zhao H. A low-cost lotus leaf-based carbon film for solar-driven steam generation. New Carbon Mater. 2020;35:436–43.

    CAS  Google Scholar 

  40. Xu N, Hu X, Xu W, Li X, Zhou L, Zhu S, Zhu J. Mushrooms as efficient solar steam-generation devices. Adv Mater. 2017;29:1606762.

    Google Scholar 

  41. Zhang H, Li L, Jiang B, Zhang Q, Ma J, Tang D, Song Y. Highly thermally insulated and superhydrophilic corn straw for efficient solar vapor generation. ACS Appl Mater Interfaces. 2020;12:16503–11.

    CAS  Google Scholar 

  42. Bian Y, Du Q, Tang K, Shen Y, Hao L, Zhou D, Wang X, Xu Z, Zhang H, Zhao L, Zhu S, Ye J, Lu H, Yang Y, Zhang R, Zheng Y, Gu S. Carbonized bamboos as excellent 3D solar vapor-generation devices. Adv Mater Technol. 2019;4:1800593.

    Google Scholar 

  43. Lv B, Gao C, Xu Y, Fan X, Xiao J, Liu Y, Song C. A self-floating, salt-resistant 3D Janus radish-based evaporator for highly efficient solar desalination. Desalination. 2021;510: 115093.

    CAS  Google Scholar 

  44. Gong B, Yang H, Wu S, Tian Y, Guo X, Xu C, Kuang W, Yan J, Cen K, Bo Z. Multifunctional solar bamboo straw: Multiscale 3D membrane for self-sustained solar-thermal water desalination and purification and thermoelectric waste heat recovery and storage. Carbon. 2021;171:359–67.

    CAS  Google Scholar 

  45. Storer DP, Phelps JL, Wu X, Owens G, Khan NI, Xu H. Graphene and rice-straw-fiber-based 3D photothermal aerogels for highly efficient solar evaporation. ACS Appl Mater Interfaces. 2020;12:15279–87.

    CAS  Google Scholar 

  46. Long Y, Huang S, Yi H, Chen J, Wu J, Liao Q, Liang H, Cui H, Ruan S, Zeng Y-J. Carrot-inspired solar thermal evaporator. J Mater Chem A. 2019;7:26911–6.

    CAS  Google Scholar 

  47. Song G, Yuan Y, Liu J, Liu Q, Zhang W, Fang J, Gu J, Ma D, Zhang D. Biomimetic superstructures assembled from Au nanostars and nanospheres for efficient solar evaporation. Adv Sustain Syst. 2019;3:1900003.

    Google Scholar 

  48. Chen J, Feng J, Li Z, Xu P, Wang X, Yin W, Wang M, Ge X, Yin Y. Space-confined seeded growth of black silver nanostructures for solar steam generation. Nano Lett. 2018;19:400–7.

    CAS  Google Scholar 

  49. Wang M, Wang P, Zhang J, Li C, Jin Y. A ternary Pt/Au/TiO2-decorated plasmonic wood carbon for high-efficiency interfacial solar steam generation and photodegradation of tetracycline. Chemsuschem. 2019;12:467–72.

    CAS  Google Scholar 

  50. Sheng C, Yang N, Yan Y, Shen X, Jin C, Wang Z, Sun Q. Bamboo decorated with plasmonic nanoparticles for efficient solar steam generation. Appl Therm Eng. 2020;167: 114712.

    CAS  Google Scholar 

  51. Hou J, Liu S, Ning Y, Wang Y, Yang Y, Wang Q. Rational design of Au-H2Ti2O5 nanowires on Ti foam for solar-driven seawater evaporation enhancement. J Alloy Compd. 2021;851: 156879.

    CAS  Google Scholar 

  52. Ren L, Yi X, Yang Z, Wang D, Liu L, Ye J. Designing carbonized loofah sponge architectures with plasmonic Cu nanoparticles encapsulated in graphitic layers for highly efficient solar vapor generation. Nano Lett. 2021;21:1709–15.

    CAS  Google Scholar 

  53. Li N, Zhang Y, Zhi H, Tang J, Shao Y, Yang L, Sun T, Liu H, Xue G. Micro/nano-cactus structured aluminium with superhydrophobicity and plasmon-enhanced photothermal trap for icephobicity. Chem Eng J. 2021;429: 132183.

    Google Scholar 

  54. Jiang H, Ai L, Chen M, Jiang J. Broadband nickel sulfide/nickel foam-based solar evaporator for highly efficient water purification and electricity generation. ACS Sustainable Chem Eng. 2020;8:10833–41.

    CAS  Google Scholar 

  55. Liu H, Liu Y, Wang L, Qin X, Yu J. Nanofiber based origami evaporator for multifunctional and omnidirectional solar steam generation. Carbon. 2021;177:199–206.

    CAS  Google Scholar 

  56. Zuo S, Xia D, Guan Z, Yang F, Cheng S, Xu H, Wan R, Li D, Liu M. Dual-functional CuO/CN for highly efficient solar evaporation and water purification. Sep Purif Technol. 2021;254: 117611.

    CAS  Google Scholar 

  57. Özkartal A, Noori DT. Effects of thermal annealing on the characterization of p-NiO/n-GaAs heterojunctions produced by thermal evaporation. J Mater Sci. 2021;32:13462–71.

    Google Scholar 

  58. Irshad MS, Wang X, Abbasi MS, Arshad N, Chen Z, Guo Z, Yu L, Qian J, You J, Mei T. Semiconductive, flexible MnO2 NWs/chitosan hydrogels for efficient solar steam generation. ACS Sustain Chem Eng. 2021;9:3887–900.

    CAS  Google Scholar 

  59. Zhu Q, Ye K, Zhu W, Xu W, Zou C, Song L, Sharman E, Wang L, Jin S, Zhang G, Luo Y, Jiang J. A hydrogenated metal oxide with full solar spectrum absorption for highly efficient photothermal water evaporation. J Phys Chem Lett. 2020;11:2502–9.

    CAS  Google Scholar 

  60. Ren P, Li J, Zhang X, Yang X. Highly efficient solar water evaporation of TiO2@TiN hyperbranched nanowires-carbonized wood hierarchical photothermal conversion material. Mater Today Energy. 2020;18: 100546.

    CAS  Google Scholar 

  61. Ying P, Li M, Yu F, Geng Y, Zhang L, He J, Zheng Y, Chen R. Band gap engineering in an efficient solar-driven interfacial evaporation system. ACS Appl Mater Interfaces. 2020;12:32880–7.

    CAS  Google Scholar 

  62. Tudu BK, Gupta V, Kumar A, Sinhamahapatra A. Freshwater production via efficient oil-water separation and solar-assisted water evaporation using black titanium oxide nanoparticles. J Colloid Interf Sci. 2020;566:183–93.

    CAS  Google Scholar 

  63. Bi D, Li Y, Yao Y, Tao T, Liang B, Lu S. Preparation and characterizations of flexible photothermal Ti2O3-PVA nanocomposites. J Alloy Compd. 2020;825: 153998.

    CAS  Google Scholar 

  64. Zhang D, Cai Y, Liang Q, Wu Z, Sheng N, Zhang M, Wang B, Chen S. Scalable, flexible, durable, and salt-tolerant CuS/bacterial cellulose gel membranes for efficient interfacial solar evaporation. ACS Sustainable Chem Eng. 2020;8:9017–26.

    CAS  Google Scholar 

  65. Li X, Yao Z, Wang J, Li D, Yu K, Jiang Z. A novel flake-like Cu7S4 solar absorber for high-performance large-scale water evaporation. ACS Appl Energy Mater. 2019;2:5154–61.

    CAS  Google Scholar 

  66. Song L, Zhang X, Wang Z, Zheng T, Yao J. Fe3O4/polyvinyl alcohol decorated delignified wood evaporator for continuous solar steam generation. Desalination. 2021;507: 115024.

    CAS  Google Scholar 

  67. Abdel Wahed MS, El Kalliny AS, Badawy MI, Attia MS, Gad Allah TA. Core double-shell MnFe2O4@rGO@TiO2 superparamagnetic photocatalyst for wastewater treatment under solar light. Chem Eng J. 2020;382: 122936.

    CAS  Google Scholar 

  68. Yang L, Xiang Y, Jia F, Xia L, Gao C, Wu X, Peng L, Liu J, Song S. Photo-thermal synergy for boosting photo-Fenton activity with rGO-ZnFe2O4: Novel photo-activation process and mechanism toward environment remediation. Appl Catal B-Environ. 2021;292: 120198.

    CAS  Google Scholar 

  69. Huang Y, Zhao X, Zong M, Yan J, Li T. Preparation of ternary composite material rGO/CoFe2O4/Ag and research on its microwave absorption properties. J Mater Sci: Mater Electron. 2021;32:23944–57.

    CAS  Google Scholar 

  70. Gao M, Zhu L, Peh CK, Ho GW. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy Environ Sci. 2019;12:841–64.

    CAS  Google Scholar 

  71. Yin X, Zhang Y, Xu X, Wang Y. Bilayer fiber membrane electrospun from MOF derived Co3S4 and PAN for solar steam generation induced sea water desalination. J Solid State Chem. 2021;303: 122423.

    CAS  Google Scholar 

  72. Naseem S, Wu CM, Chala TF. Photothermal-responsive tungsten bronze/recycled cellulose triacetate porous fiber membranes for efficient light-driven interfacial water evaporation. Sol Energy. 2019;194:391–9.

    CAS  Google Scholar 

  73. Tessema AA, Wu C-M, Motora KG, Naseem S. Highly-efficient and salt-resistant CsxWO3@g-C3N4/PVDF fiber membranes for interfacial water evaporation, desalination, and sewage treatment. Compos Sci Technol. 2021;211: 108865.

    CAS  Google Scholar 

  74. Naseem S, Wu CM, Motora KG. Novel multifunctional RbxWO3@Fe3O4 immobilized Janus membranes for desalination and synergic-photocatalytic water purification. Desalination. 2021;517: 115256.

    CAS  Google Scholar 

  75. He M, Dai H, Liu H, Cai Q, Liu Y, Wang L, Qin X, Yu J. High-performance solar steam generator based on polypyrrole-coated fabric via 3D macro-and microstructure design. ACS Appl Mater Interfaces. 2021;13:40664–72.

    CAS  Google Scholar 

  76. Gao H, Sun Y, Li S, Ke X, Cai Y, Wan X, Zhang H, Li C, Chen Y. An all small molecule organic solar cell based on a porphyrin donor and a non-fullerene acceptor with complementary and broad absorption. Dyes Pigments. 2020;176: 108250.

    CAS  Google Scholar 

  77. Cui T, Li S, Chen S, Liang Y, Sun H, Wang L. “Stealth” dendrimers with encapsulation of indocyanine green for photothermal and photodynamic therapy of cancer. Int J Pharmaceut. 2021;600: 120502.

    CAS  Google Scholar 

  78. Zhao F, Zhou X, Shi Y, Qian X, Alexander M, Zhao X, Mendez S, Yang R, Qu L, Yu G. Highly efficient solar vapour generation via hierarchically nanostructured gels. Nat Nanotechnol. 2018;13:489–95.

    CAS  Google Scholar 

  79. Lei C, Guo Y, Guan W, Yu G. Polymeric materials for solar water purification. J Polym Sci. 2021;59:3084–99.

    CAS  Google Scholar 

  80. Dong X, Si Y, Chen C, Ding B, Deng H. Reed leaves inspired silica nanofibrous aerogels with parallel-arranged vessels for salt-resistant solar desalination. ACS Nano. 2021;15:12256–66.

    CAS  Google Scholar 

  81. Ren Y, Lian R, Liu Z, Zhang G, Wang W, Ding D, Tian M, Zhang Q. CNT/polyimide fiber-based 3D photothermal aerogel for high-efficiency and long-lasting seawater desalination. Desalination. 2022;535: 115836.

    CAS  Google Scholar 

  82. Naghdi S, Miskovic-Stankovic V. A review of the corrosion behaviour of graphene coatings on metal surfaces obtained by chemical vapour deposition. J Electrochem Soc. 2022;169: 021505.

    CAS  Google Scholar 

  83. Zang L, Sun L, Zhang S, Finnerty C, Kim A, Ma J, Mi B. Nanofibrous hydrogel-reduced graphene oxide membranes for effective solar-driven interfacial evaporation and desalination. Chem Eng J. 2021;422: 129998.

    CAS  Google Scholar 

  84. Huang J, Hu Y, Bai Y, He Y, Zhu J. Novel solar membrane distillation enabled by a PDMS/CNT/PVDF membrane with localized heating. Desalination. 2020;489: 114529.

    CAS  Google Scholar 

  85. Butt MA. Thin-film coating methods: A successful marriage of high-quality and cost-effectiveness-A brief exploration. Coatings 2022;12.

  86. Wang G, Lu C, Sun T, Li Y. Accelerating the stabilization of polyacrylonitrile fibers by nitrogen pretreatment. J Appl Polym Sci. 2022;139:52129.

    CAS  Google Scholar 

  87. Morita K, Murata Y, Ishitani A, Murayama K, Ono T, Nakajima A. Characterization of commercially available PAN (polyacrylonitri1e)-based carbon fibers. Pure Appl Chem. 1986;58:455–68.

    CAS  Google Scholar 

  88. Jing M, Wang C, Wang Q, Bai Y, Zhu B. Chemical structure evolution and mechanism during pre-carbonization of PAN-based stabilized fiber in the temperature range of 350–600 °C. Polym Degrad Stab. 2007;92:1737–42.

    CAS  Google Scholar 

  89. Shokrani Havigh R, Mahmoudi CH. A comprehensive study on the effect of carbonization temperature on the physical and chemical properties of carbon fibers. Sci Rep. 2022;12:10704.

    CAS  Google Scholar 

  90. Xu W, Xin B, Yang X. Carbonization of electrospun polyacrylonitrile (PAN)/cellulose nanofibril (CNF) hybrid membranes and its mechanism. Cellulose. 2020;27:3789–804.

    CAS  Google Scholar 

  91. Liu Z, Gao B, Miao Y, Zhao J, Huang X, Li W, Xu Z. Silk fibroin/carbon nanofiber composite aerogel for efficient and stable solar steam generation. Compos Commun. 2022;36: 101358.

    Google Scholar 

  92. Sun M, Boo C, Shi W, Rolf J, Shaulsky E, Cheng W, Plata DL, Qu J, Elimelech M. Engineering carbon nanotube forest superstructure for robust thermal desalination membranes. Adv Funct Mater 2019;29.

  93. Kim H, Tiwari AP, Mukhiya T, Kim HY. Temperature-controlled in situ synthesized carbon nanotube-protected vanadium phosphate particle-anchored electrospun carbon nanofibers for high energy density symmetric supercapacitors. J Colloid Interf Sci. 2021;600:740–51.

    CAS  Google Scholar 

  94. Lu F, Wang J, Sun X, Chang Z. 3D hierarchical carbon nanofibers/TiO2@MoS2 core-shell heterostructures by electrospinning, hydrothermal and in-situ growth for flexible electrode materials. Mater Design. 2020;189: 108503.

    CAS  Google Scholar 

  95. Molco M, Laye F, Samperio E, Ziv Sharabani S, Fourman V, Sherman D, Tsotsalas M, Wöll C, Lahann J, Sitt A. Performance fabrics obtained by in situ growth of metal-organic frameworks in electrospun fibers. ACS Appl Mater Interfaces. 2021;13:12491–500.

    CAS  Google Scholar 

  96. Li Z, Ma Z, Zhang X, Du Q, Fu Y, Shuang L, Yang K, Li L, Lai W, Zhang W. In-situ growth NiMoS3 nanoparticles onto electrospinning synthesis carbon nanofibers as a low cost platinum-free counter electrode for dye-sensitized solar cells. J Alloy Compd. 2021;850: 156807.

    CAS  Google Scholar 

  97. Wang H, Miao L, Tanemura S. Morphology control of Ag polyhedron nanoparticles for cost-effective and fast solar steam generation. Sol RRL. 2017;1:1600023.

    Google Scholar 

  98. Duan H, Zheng Y, Xu C, Shang Y, Ding F. Experimental investigation on the plasmonic blended nanofluid for efficient solar absorption. Appl Therm Eng. 2019;161: 114192.

    CAS  Google Scholar 

  99. Chen M, Wang X, Hu Y, He Y. Coupled plasmon resonances of Au thorn nanoparticles to enhance solar absorption performance. J Quant Spectrosc RA. 2020;250: 107029.

    CAS  Google Scholar 

  100. Zhou L, Tan Y, Ji D, Zhu B, Zhang P, Xu J, Gan Q, Yu Z, Zhu J. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci Adv. 2016;2: e1501227.

    Google Scholar 

  101. Sayeed MA, Rouf HK. Effect of Zn-doping on the structural, optical and electrical properties of thermally vacuum evaporated CdTe thin films. Surf Interfaces. 2021;23: 100968.

    CAS  Google Scholar 

  102. He W, Zhou L, Wang M, Cao Y, Chen X, Hou X. Structure development of carbon-based solar-driven water evaporation systems. Sci Bull. 2021;66:1472–83.

    CAS  Google Scholar 

  103. Liu X, Mishra DD, Wang X, Peng H, Hu C. Towards highly efficient solar-driven interfacial evaporation for desalination. J Mater Chem A. 2020;8:17907–37.

    CAS  Google Scholar 

  104. Wu Y, Shen L, Zhang C, Gao H, Chen J, Jin L, Lin P, Zhang H, Xia Y. Polyacid doping-enabled efficient solar evaporation of polypyrrole hydrogel. Desalination. 2021;505: 114766.

    CAS  Google Scholar 

  105. Tian Y, Liu X, Xu S, Li J, Caratenuto A, Mu Y, Wang Z, Chen F, Yang R, Liu J. Recyclable and efficient ocean biomass-derived hydrogel photothermal evaporator for thermally-localized solar desalination. Desalination. 2022;523: 115449.

    CAS  Google Scholar 

  106. Wang X, Gan Q, Chen R, Peng H, Zhang T, Ye M. Water delivery channel design in solar evaporator for efficient and durable water evaporation with salt rejection. ACS Sustainable Chem Eng. 2020;8:7753–61.

    CAS  Google Scholar 

  107. Zou Y, Wu X, Li H, Yang L, Zhang C, Wu H, Li Y, Xiao L. Metal-phenolic network coated cellulose foams for solar-driven clean water production. Carbohyd Polym. 2021;254: 117404.

    CAS  Google Scholar 

  108. Chen Z, Li Q, Chen X. Porous graphene/polyimide membrane with a three-dimensional architecture for rapid and efficient solar desalination via interfacial evaporation. ACS Sustainable Chem Eng. 2020;8:13850–8.

    CAS  Google Scholar 

  109. Kaur M, Ishii S, Shinde SL, Nagao T. All-ceramic solar-driven water purifier based on anodized aluminum oxide and plasmonic titanium nitride. Adv Sustain Syst. 2019;3:1800112.

    Google Scholar 

  110. Wang Z, Yan Y, Shen X, Jin C, Sun Q, Li H. A wood-polypyrrole composite as a photothermal conversion device for solar evaporation enhancement. J Mater Chem A. 2019;7:20706–12.

    CAS  Google Scholar 

  111. Xu K, Wang C, Li Z, Yan X, Mu X, Ma M, Zhang P. Architecting a Janus biomass carbon/sponge evaporator with salt-rejection and ease of floatation for sustainable solar-driven desalination. Environ Sci. 2021;7:879–85.

    CAS  Google Scholar 

  112. Liu S, Huang C, Luo X, Rao Z. High-performance solar steam generation of a paper-based carbon particle system. Appl Therm Eng. 2018;142:566–72.

    CAS  Google Scholar 

  113. Wang Y, Li G, Chan K. Cost-effective and eco-friendly laser-processed cotton paper for high-performance solar evaporation. Sol Energy Mater Sol C. 2020;218: 110693.

    CAS  Google Scholar 

  114. Wang S, Li H, Zou S, Zhang G. Experimental research on a feasible rice husk/geopolymer foam building insulation material. Energy Buildings. 2020;226: 110358.

    Google Scholar 

  115. Liang T, Wang C, Li B, Chen J, Ye Z, Yan C, Wang H, Myung NV. Ultralight electrospun fiber foam with tunable lamellar macropores for efficient interfacial evaporation. J Environ Chem Eng. 2022;10: 107522.

    CAS  Google Scholar 

  116. Bai H, Fan T, Guan H, Su Y, Zhang J, Wang J, Ramakrishna S, Long Y. Multifunctional integrated sandwich-structured evaporator based on nanofibrous membrane for efficient photothermal seawater desalination. Compos Commun. 2022;31: 101104.

    Google Scholar 

  117. Li L, Zhang J. Water harvesting from desert soil via interfacial solar heating under natural sunlight. J Colloid Interf Sci. 2022;607:1986–92.

    CAS  Google Scholar 

  118. Finnerty CT, Menon AK, Conway KM, Lee D, Nelson M, Urban JJ, Sedlak D, Mi B. Interfacial solar evaporation by a 3D graphene oxide stalk for highly concentrated brine treatment. Environ Sci Technol. 2021;55:15435–45.

    CAS  Google Scholar 

  119. Li X, Li J, Lu J, Xu N, Chen C, Min X, Zhu B, Li H, Zhou L, Zhu S. Enhancement of interfacial solar vapor generation by environmental energy. Joule. 2018;2:1331–8.

    CAS  Google Scholar 

  120. Wang W, Shi Y, Zhang C, Hong S, Shi L, Chang J, Li R, Jin Y, Ong C, Zhuo S. Simultaneous production of fresh water and electricity via multistage solar photovoltaic membrane distillation. Nat Commun. 2019;10:3012.

    Google Scholar 

  121. Liang P, Liu S, Ding Y, Wen X, Wang K, Shao C, Hong X, Liu Y. A self-floating electrospun nanofiber mat for continuously high-efficiency solar desalination. Chemosphere. 2021;280: 130719.

    CAS  Google Scholar 

  122. Wang S, Niu Y, Wang C, Wang F, Zhu Z, Sun H, Liang W, Li A. Modified hollow glass microspheres/reduced graphene oxide composite aerogels with low thermal conductivity for highly efficient solar steam generation. ACS Appl Mater Interfaces. 2021;13:42803–12.

    CAS  Google Scholar 

  123. Zhuang P, Li D, Xu N, Yu X, Zhou L. Stable self-floating reduced graphene oxide hydrogel membrane for high rate of solar vapor evaporation under 1 sun. Glob Chall. 2021;5:2000053.

    Google Scholar 

  124. Qiao L, Li N, Luo L, He J, Lin Y, Li J, Yu L, Guo C, Murto P, Xu X. Design of monolithic closed-cell polymer foams via controlled gas-foaming for high-performance solar-driven interfacial evaporation. J Mater Chem A. 2021;9:9692–705.

    CAS  Google Scholar 

  125. Hu Z, Hao L, Liu N, He P, Bai H, Niu R, Gong J. High-performance bilayer solar evaporators constructed by candle-derived carbon nanoparticle/wood hybrid. Mater Today Commun. 2021;28: 102636.

    CAS  Google Scholar 

  126. Li C, Jiang D, Huo B, Ding M, Huang C, Jia D, Li H, Liu C-Y, Liu J. Scalable and robust bilayer polymer foams for highly efficient and stable solar desalination. Nano Energy. 2019;60:841–9.

    CAS  Google Scholar 

  127. Liu Z, Qing R, Xie A, Liu H, Zhu L, Chen S. Self-contained Janus aerogel with antifouling and salt-rejecting properties for stable solar evaporation. ACS Appl Mater Interfaces. 2021;13:18829–37.

    CAS  Google Scholar 

  128. Huang H, Zhao L, Yu Q, Lin P, Xu J, Yin X, Chen S, Wang H, Wang L. Flexible and highly efficient bilayer photothermal paper for water desalination and purification: Self-floating, rapid water transport, and localized heat. ACS Appl Mater Interfaces. 2020;12:11204–13.

    CAS  Google Scholar 

  129. Zhang Y, Wu L, Wang X, Yu J, Ding B. Super hygroscopic nanofibrous membrane-based moisture pump for solar-driven indoor dehumidification. Nat Commun. 2020;11:3302.

    CAS  Google Scholar 

  130. Qi Q, Wang Y, Wang W, Ding X, Yu D. High-efficiency solar evaporator prepared by one-step carbon nanotubes loading on cotton fabric toward water purification. Sci Total Environ. 2020;698: 134136.

    CAS  Google Scholar 

  131. Tian C, Liu J, Ruan R, Tian X, Lai X, Xing L, Su Y, Huang W, Cao Y, Tu J. Sandwich photothermal membrane with confined hierarchical carbon cells enabling high-efficiency solar steam generation. Small. 2020;16:2000573.

    CAS  Google Scholar 

  132. Chong J, Wang B, Li K. Water transport through graphene oxide membranes: the roles of driving forces. Chem Commun. 2018;54:2554–7.

    CAS  Google Scholar 

  133. Gan W, Wang Y, Xiao S, Gao R, Shang Y, Xie Y, Liu J, Li J. Magnetically driven 3D cellulose film for improved energy efficiency in solar evaporation. ACS Appl Mater Interfaces. 2021;13:7756–65.

    CAS  Google Scholar 

  134. Xia Y, Hou Q, Jubaer H, Li Y, Kang Y, Yuan S, Liu H, Woo MW, Zhang L, Gao L. Spatially isolating salt crystallisation from water evaporation for continuous solar steam generation and salt harvesting. Energy Environ Sci. 2019;12:1840–7.

    CAS  Google Scholar 

  135. Li Y, Jin X, Zheng Y, Li W, Zheng F, Wang W, Lin T, Zhu Z. Tunable water delivery in carbon-coated fabrics for high-efficiency solar vapor generation. ACS Appl Mater Interfaces. 2019;11:46938–46.

    CAS  Google Scholar 

  136. Zhang R, Xiang B, Wang Y, Tang S, Meng X. A lotus-inspired 3D biomimetic design toward an advanced solar steam evaporator with ultrahigh efficiency and remarkable stability. Mater Horiz. 2022;9:1232–42.

    CAS  Google Scholar 

  137. Li A, Xiong J, Liu Y, Wang L, Qin X, Yu J. Fiber-intercepting-particle structured MOF fabrics for simultaneous solar vapor generation and organic pollutant adsorption. Chem Eng J. 2022;428: 131365.

    CAS  Google Scholar 

  138. Liu Y, Xiong J, Li A, Wang R, Wang L, Qin X. Plasmonic silver nanoparticle-decorated electrospun nanofiber membrane for interfacial solar vapor generation. Text Res J. 2021;91:00405175211014966.

    Google Scholar 

  139. Popiel C, Wojtkowiak J. Simple formulas for thermophysical properties of liquid water for heat transfer calculations (from 0 to 150 °C). Heat Transfer Eng. 1998;19:87–101.

    CAS  Google Scholar 

  140. Henderson-Sellers B. A new formula for latent heat of vaporization of water as a function of temperature. Q J Roy Meteor Soc. 1984;110:1186–90.

    Google Scholar 

  141. Li X, Lin R, Ni G, Xu N, Hu X, Zhu B, Lv G, Li J, Zhu S, Zhu J. Three-dimensional artificial transpiration for efficient solar waste-water treatment. Natl Sci Rev. 2018;5:70–7.

    CAS  Google Scholar 

  142. Varabhas J, Chase GG, Reneker D. Electrospun nanofibers from a porous hollow tube. Polymer. 2008;49:4226–9.

    CAS  Google Scholar 

  143. Salem DR. 1-Electrospinning of nanofibers and the charge injection method. In: Brown PJ, Stevens K, editors. Nanofibers and nanotechnology in textiles: Woodhead Publishing; 2007. pp. 3–21.

  144. Liu Y, Guo L. Homogeneous field intensity control during multi-needle electrospinning via finite element analysis and simulation. J Nanosci Nanotechno. 2013;13:843–7.

    CAS  Google Scholar 

  145. Molnar K, Nagy ZK. Corona-electrospinning: Needleless method for high-throughput continuous nanofiber production. Eur Polym J. 2016;74:279–86.

    CAS  Google Scholar 

  146. Wei L, Sun R, Liu C, Xiong J, Qin X. Mass production of nanofibers from needleless electrospinning by a novel annular spinneret. Mater Design. 2019;179: 107885.

    Google Scholar 

  147. Xiong J, Liu Y, Li A, Wei L, Wang L, Qin X, Yu J. Mass production of high-quality nanofibers via constructing pre-Taylor cones with high curvature on needleless electrospinning. Mater Design. 2021;197: 109247.

    CAS  Google Scholar 

  148. Liu Z, Zhou L, Ruan F, Wei A, Zhao J, Feng Q. Needle-disk electrospinning: Mechanism elucidation, parameter optimization and productivity improvement. Recent Pat Nanotech. 2020;14:46–55.

    CAS  Google Scholar 

  149. Chen C, Kuang Y, Hu L. Challenges and opportunities for solar evaporation. Joule. 2019;3:683–718.

    CAS  Google Scholar 

Download references

Acknowledgements

Jianghui Zhao acknowledges financial support from the Anhui Polytechnic University. A research grant from the Ministry of Higher Education Malaysia for Fundamental Research Grant Scheme with Project Code: FRGS/1/2019/TK02/USM/02/1 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon Huat Tan.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Liu, Z., Low, S.C. et al. Electrospinning Technique Meets Solar Energy: Electrospun Nanofiber-Based Evaporation Systems for Solar Steam Generation. Adv. Fiber Mater. 5, 1318–1348 (2023). https://doi.org/10.1007/s42765-023-00286-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-023-00286-4

Keywords

Navigation