Skip to main content

Advertisement

Log in

Assembly of Nanowires into Macroscopic One-Dimensional Fibers in Liquid State

  • Review
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Natural structural materials, such as spider silk, wood, and bone, are universally acknowledged as the gold standard for the ideal combinations of strength and toughness. The exceptional integrated performance of these biological materials can be ascribed to their multiscale hierarchical architectures and components. Mimicking the hierarchical assembly feature of natural materials, artificial fibers, which are generated through the one-dimensional (1D) assembly of nanowires, have been widely reported with remarkable flexibility and functionality. Furthermore, the distinguishing feature of nanowires’ 1D assembly can bridge the unique properties of nanowires with their potential functional applications. This tutorial review summarizes the recent developments in the assembly of nanowires into macroscopic 1D fibers in the liquid state. We begin by introducing the general strategies and mechanisms for assembling nanowires in one direction and then, illustrate their potential applications in energy storage, sensors, biomedical engineering, etc. Finally, a brief summary and some personal perspectives on the future research directions of nanowires’ 1D assembly are also proposed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Wegst UGK, Bai H, Saiz E, Tomsia AP, Ritchie RO. Bioinspired structural materials. Nat Mater. 2015;14:23.

    Article  CAS  Google Scholar 

  2. Lei C, Xie Z, Wu K, Fu Q. Controlled vertically aligned structures in polymer composites: natural inspiration, structural processing, and functional application. Adv Mater. 2021;33:2103495.

    Article  CAS  Google Scholar 

  3. Knowles TPJ, Mezzenga R. Amyloid fibrils as building blocks for natural and artificial functional materials. Adv Mater. 2016;28:6546.

    Article  CAS  Google Scholar 

  4. Omenetto FG, Kaplan DL. New opportunities for an ancient material. Science. 2010;329:528.

    Article  CAS  Google Scholar 

  5. Hu Z, Yan S, Li X, You R, Zhang Q, Kaplan DL. Natural silk nanofibril aerogels with distinctive filtration capacity and heat-retention performance. ACS Nano. 2021;15:8171.

    Article  CAS  Google Scholar 

  6. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev. 2011;40:3941.

    Article  CAS  Google Scholar 

  7. Zhao H, Zhang Y, Liu Y, Zheng P, Gao T, Cao Y, Liu X, Yin J, Pei R. In situ forming cellulose nanofibril-reinforced hyaluronic acid hydrogel for cartilage regeneration. Biomacromol. 2021;22:5097.

    Article  CAS  Google Scholar 

  8. Barthelat F, Yin Z, Buehler MJ. Structure and mechanics of interfaces in biological materials. Nat Rev Mater. 2016;1:16007.

    Article  CAS  Google Scholar 

  9. Koeck KS, Salehi S, Humenik M, Scheibel T. Processing of continuous non-crosslinked collagen fibers for microtissue formation at the muscle-tendon interface. Adv Funct Mater. 2021;32:2112238.

    Article  Google Scholar 

  10. Li J, Li S, Huang J, Khan AQ, An B, Zhou X, Liu Z, Zhu M. Spider silk-inspired artificial fibers. Adv Sci. 2022;9:2103965.

    Article  Google Scholar 

  11. Rising A, Johansson J. Toward spinning artificial spider silk. Nat Chem Biol. 2015;11:309.

    Article  CAS  Google Scholar 

  12. Keten S, Xu Z, Ihle B, Buehler MJ. Nanoconfinement controls stiffness, strength and mechanical toughness of beta-sheet crystals in silk. Nat Mater. 2010;9:359.

    Article  CAS  Google Scholar 

  13. Fu C, Shao Z, Fritz V. Animal silks: their structures, properties and artificial production. Chem Commun. 2009;43:6515.

    Article  Google Scholar 

  14. Cranford SW, Tarakanova A, Pugno NM, Buehler MJ. Nonlinear material behaviour of spider silk yields robust webs. Nature. 2012;482:72.

    Article  CAS  Google Scholar 

  15. Ling S, Kaplan DL, Buehler MJ. Nanofibrils in nature and materials engineering. Nat Rev Mater. 2018;3:18016.

    Article  CAS  Google Scholar 

  16. Zhu G, Dufresne A. Synergistic reinforcing and cross-linking effect of thiol-ene-modified cellulose nanofibrils on natural rubber. Carbohydr Polym. 2022;278: 118954.

    Article  CAS  Google Scholar 

  17. Yang X, Reid MS, Olsen P, Berglund LA. Eco-friendly cellulose nanofibrils designed by nature: effects from preserving native state. ACS Nano. 2020;14:724.

    Article  CAS  Google Scholar 

  18. Hu K, He P, Zhao Z, Huang L, Liu K, Lin S, Zhang M, Wu H, Chen L, Ni Y. Nature-inspired self-powered cellulose nanofibrils hydrogels with high sensitivity and mechanical adaptability. Carbohydr Polym. 2021;264: 117995.

    Article  CAS  Google Scholar 

  19. Martin-Martinez FJ, Jin K, Barreiro DL, Buehler MJ. The rise of hierarchical nanostructured materials from renewable sources: Learning from nature. ACS Nano. 2018;12:7425.

    Article  CAS  Google Scholar 

  20. Liu Z, Xu J, Chen D, Shen G. Flexible electronics based on inorganic nanowires. Chem Soc Rev. 2015;44:161.

    Article  CAS  Google Scholar 

  21. Wang J-L, Hassan M, Liu J-W, Yu S-H. Nanowire assemblies for flexible electronic devices: recent advances and perspectives. Adv Mater. 2018;30:1803430.

    Article  Google Scholar 

  22. Shang L, Yu Y, Liu Y, Chen Z, Kong T, Zhao Y. Spinning and applications of bioinspired fiber systems. ACS Nano. 2019;13:2749.

    Article  CAS  Google Scholar 

  23. Liu Z, Zhu T, Wang J, Zheng Z, Li Y, Li J, Lai Y. Functionalized fiber-based strain sensors: Pathway to next-generation wearable electronics. Nano-Micro Lett. 2022;14:61.

    Article  Google Scholar 

  24. Wang G, Zhu M. Reversible fusion and fission of graphene oxide-based fibers. Adv Fiber Mater. 2021;3:381.

    Article  CAS  Google Scholar 

  25. Li Q, Ding C, Yuan W, Xie R, Zhou X, Zhao Y, Yu M, Yang Z, Sun J, Tian Q, Han F, Li H, Deng X, Li G, Liu Z. Highly stretchable and permeable conductors based on shrinkable electrospun fiber mats. Adv Fiber Mater. 2021;3:302.

    Article  CAS  Google Scholar 

  26. Wang C, Liu Y, Qu X, Shi B, Zheng Q, Lin X, Chao S, Wang C, Zhou J, Sun Y, Mao G, Li Z. Ultra-stretchable and fast self-healing ionic hydrogel in cryogenic environments for artificial nerve fiber. Adv Mater. 2022;34:2105416.

    Article  CAS  Google Scholar 

  27. Yu Y, Li L, Liu E, Han X, Wang J, Xie Y-X, Lu C. Light-driven core-shell fiber actuator based on carbon nanotubes/ liquid crystal elastomer for artificial muscle and phototropic locomotion. Carbon. 2022;187:97.

    Article  CAS  Google Scholar 

  28. Zou J, Feng M, Ding N, Yan P, Xu H, Yang D, Fang NX, Gu G, Zhu X. Muscle-fiber array inspired, multiple-mode, pneumatic artificial muscles through planar design and one-step rolling fabrication. Natl Sci Rev. 2021;8:nwab048.

    Article  Google Scholar 

  29. Guo C, Li C, Mu X, Kaplan DL. Engineering silk materials: From natural spinning to artificial processing. Appl Phys Rev. 2020;7: 011313.

    Article  CAS  Google Scholar 

  30. Wang Y, Liao W, Sun J, Nandi R, Yang Z. Bioinspired construction of artificial cardiac muscles based on liquid crystal elastomer fibers. Adv Mater Technol. 2022;7:2100934.

    Article  CAS  Google Scholar 

  31. Sun J, Wang Y, Liao W, Yang Z. Ultrafast, high-contractile electrothermal-driven liquid crystal elastomer fibers towards artificial muscles. Small. 2021;17:2103700.

    Article  CAS  Google Scholar 

  32. Gao P, Li J, Shi Q. A hollow polyethylene fiber-based artificial muscle. Adv Fiber Mater. 2019;1:214.

    Article  Google Scholar 

  33. Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354:56.

    Article  CAS  Google Scholar 

  34. Munoz E, Dalton AB, Collins S, Kozlov M, Razal J, Coleman JN, Kim BG, Ebron VH, Selvidge M, Ferraris JP, Baughman RH. Multifunctional carbon nanotube composite fibers. Adv Eng Mater. 2004;6:801.

    Article  CAS  Google Scholar 

  35. Kou L, Liu Y, Zhang C, Shao L, Tian Z, Deng Z, Gao C. A mini review on nanocarbon-based 1d macroscopic fibers: assembly strategies and mechanical properties. Nano-Micro Lett. 2017;9:51.

    Article  Google Scholar 

  36. Vigolo B, Penicaud A, Coulon C, Sauder C, Pailler R, Journet C, Bernier P, Poulin P. Macroscopic fibers and ribbons of oriented carbon nanotubes. Science. 2000;290:1331.

    Article  CAS  Google Scholar 

  37. Dalton AB, Collins S, Razal J, Munoz E, Ebron VH, Kim BG, Coleman JN, Ferraris JP, Baughman RH. Continuous carbon nanotube composite fibers: properties, potential applications, and problems. J Mater Chem. 2004;14:1.

    Article  CAS  Google Scholar 

  38. Dalton AB, Collins S, Munoz E, Razal JM, Ebron VH, Ferraris JP, Coleman JN, Kim BG, Baughman RH. Super-tough carbon-nanotube fibres—these extraordinary composite fibres can be woven into electronic textiles. Nature. 2003;423:703.

    Article  CAS  Google Scholar 

  39. Munoz E, Suh DS, Collins S, Selvidge M, Dalton AB, Kim BG, Razal JM, Ussery G, Rinzler AG, Martinez MT, Baughman RH. Highly conducting carbon nanotube/polyethyleneimine composite fibers. Adv Mater. 2005;17:1064.

    Article  CAS  Google Scholar 

  40. Kozlov ME, Capps RC, Sampson WM, Ebron VH, Ferraris JP, Baughman RH. Spinning solid and hollow polymer-free carbon nanotube fibers. Adv Mater. 2005;17:614.

    Article  CAS  Google Scholar 

  41. Steinmetz J, Glerup M, Paillet M, Bernier P, Holzinger M. Production of pure nanotube fibers using a modified wet-spinning method. Carbon. 2005;43:2397.

    Article  CAS  Google Scholar 

  42. Zhang S, Kumar S. Carbon nanotubes as liquid crystals. Small. 2008;4:1270.

    Article  CAS  Google Scholar 

  43. Lee S-H, Park J, Park JH, Lee D-M, Lee A, Moon SY, Lee SY, Jeong HS, Kim SM. Deep-injection floating-catalyst chemical vapor deposition to continuously synthesize carbon nanotubes with high aspect ratio and high crystallinity. Carbon. 2021;173:901.

    Article  CAS  Google Scholar 

  44. Cui Q, Bell DJ, Wang S, Mohseni M, Felder D, Lolsberg J, Wessling M. Wet-spun pedot/cnt composite hollow fibers as flexible electrodes for h2o2 production. ChemElectroChem. 2021;8:1665.

    Article  CAS  Google Scholar 

  45. Song WH, Kinloch IA, Windle AH. Nematic liquid crystallinity of multiwall carbon nanotubes. Science. 2003;302:1363.

    Article  CAS  Google Scholar 

  46. Song WH, Windle AH. Isotropic-nematic phase transition of dispersions of multiwall carbon nanotubes. Macromolecules. 2005;38:6181.

    Article  CAS  Google Scholar 

  47. Zhang SJ, Kinloch IA, Windle AH. Mesogenicity drives fractionation in lyotropic aqueous suspensions of multiwall carbon nanotubes. Nano Lett. 2006;6:568.

    Article  Google Scholar 

  48. Behabtu N, Green MJ, Pasquali M. Carbon nanotube-based neat fibers. Nano Today. 2008;3:24.

    Article  CAS  Google Scholar 

  49. Ericson LM, Fan H, Peng HQ, Davis VA, Zhou W, Sulpizio J, Wang YH, Booker R, Vavro J, Guthy C, Parra-Vasquez ANG, Kim MJ, Ramesh S, Saini RK, Kittrell C, Lavin G, Schmidt H, Adams WW, Billups WE, Pasquali M, Hwang WF, Hauge RH, Fischer JE, Smalley RE. Macroscopic, neat, single-walled carbon nanotube fibers. Science. 2004;305:1447.

    Article  CAS  Google Scholar 

  50. Davis VA, Parra-Vasquez ANG, Green MJ, Rai PK, Behabtu N, Prieto V, Booker RD, Schmidt J, Kesselman E, Zhou W, Fan H, Adams WW, Hauge RH, Fischer JE, Cohen Y, Talmon Y, Smalley RE, Pasquali M. True solutions of single-walled carbon nanotubes for assembly into macroscopic materials. Nat Nanotechnol. 2009;4:830.

    Article  CAS  Google Scholar 

  51. Behabtu N, Young CC, Tsentalovich DE, Kleinerman O, Wang X, Ma AWK, Bengio EA, ter Waarbeek RF, de Jong JJ, Hoogerwerf RE, Fairchild SB, Ferguson JB, Maruyama B, Kono J, Talmon Y, Cohen Y, Otto MJ, Pasquali M. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science. 2013;339:182.

    Article  CAS  Google Scholar 

  52. Lee J, Lee D-M, Kim Y-K, Jeong HS, Kim SM. Significantly increased solubility of carbon nanotubes in superacid by oxidation and their assembly into high-performance fibers. Small. 2017;13:1701131.

    Article  Google Scholar 

  53. Zhang S, Koziol KKK, Kinloch IA, Windle AH. Macroscopic fibers of well-aligned carbon nanotubes by wet spinning. Small. 2008;4:1217.

    Article  CAS  Google Scholar 

  54. Shin SR, Lee CK, So I, Jeon J-H, Kang TM, Kee C, Kim SI, Spinks GM, Wallace GG, Kim SJ. DNA-wrapped single-walled carbon nanotube hybrid fibers for supercapacitors and artificial muscles. Adv Mater. 2008;20:466.

    Article  CAS  Google Scholar 

  55. Kim H, Moon H, Lim D, Jeong W. Process optimization for manufacturing pan-based conductive yarn with carbon nanomaterials through wet spinning. Polymers. 2021;13:3544.

    Article  CAS  Google Scholar 

  56. Cao WT, Chen FF, Zhu YJ, Zhang YG, Jiang YY, Ma MG, Chen F. Binary strengthening and toughening of mxene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano. 2018;12:4583.

    Article  CAS  Google Scholar 

  57. Shin SR, Lee CK, Eom TW, Lee S-H, Kwon CH, So I, Kim SJ. DNA-coated mwnt microfibers for electrochemical actuator. Sens Actuators, B. 2012;162:173.

    Article  CAS  Google Scholar 

  58. Barisci JN, Tahhan M, Wallace GG, Badaire S, Vaugien T, Maugey M, Poulin P. Properties of carbon nanotube fibers spun from DNA-stabilized dispersions. Adv Funct Mater. 2004;14:133.

    Article  CAS  Google Scholar 

  59. Lynam C, Moulton SE, Wallace GG. Carbon-nanotube biofibers. Adv Mater. 2007;19:1244.

    Article  CAS  Google Scholar 

  60. Wan ACA, Liao IC, Yim EKF, Leong KW. Mechanism of fiber formation by interfacial polyelectrolyte complexation. Macromolecules. 2004;37:7019.

    Article  CAS  Google Scholar 

  61. Razal JM, Gilmore KJ, Wallace GG. Carbon nanotube biofiber formation in a polymer-free coagulation bath. Adv Funct Mater. 2008;18:61.

    Article  CAS  Google Scholar 

  62. Lee WJ, Clancy AJ, Kontturi E, Bismarck A, Shaffer MSP. Strong and stiff: high-performance cellulose nanocrystal/poly(vinyl alcohol) composite fibers. ACS Appl Mater Interfaces. 2016;8:31500.

    Article  CAS  Google Scholar 

  63. Vuoriluoto M, Orelma H, Lundahl M, Borghei M, Rojas OJ. Filaments with affinity binding and wet strength can be achieved by spinning bifunctional cellulose nanofibrils. Biomacromol. 2017;18:1803.

    Article  CAS  Google Scholar 

  64. Torres-Rendon JG, Schacher FH, Ifuku S, Walther A. Mechanical performance of macrofibers of cellulose and chitin nanofibrils aligned by wet-stretching: A critical comparison. Biomacromol. 2014;15:2709.

    Article  CAS  Google Scholar 

  65. Duan B, Huang Y, Lu A, Zhang L. Recent advances in chitin based materials constructed via physical methods. Prog Polym Sci. 2018;82:1.

    Article  CAS  Google Scholar 

  66. Hynninen V, Mohammadi P, Wagermaier W, Hietala S, Linder MB, Ikkala O, Nonappa. Methyl cellulose/cellulose nanocrystal nanocomposite fibers with high ductility. Eur Polym J. 2019;112:334.

    Article  CAS  Google Scholar 

  67. Wan Z, Chen C, Meng T, Mojtaba M, Teng Y, Feng Q, Li D. Multifunctional wet-spun filaments through robust nanocellulose networks wrapping to single-walled carbon nanotubes. ACS Appl Mater Interfaces. 2019;11:42808.

    Article  CAS  Google Scholar 

  68. Reyes G, Lundahl MJ, Alejandro-Martin S, Arteaga-Perez LE, Oviedo C, King AWT, Rojas OJ. Coaxial spinning of all-cellulose systems for enhanced toughness: Filaments of oxidized nanofibrils sheathed in cellulose ii regenerated from a protic ionic liquid. Biomacromol. 2020;21:878.

    Article  CAS  Google Scholar 

  69. Wang L, Ago M, Borghei M, Ishaq A, Papageorgiou AC, Lundahl M, Rojas OJ. Conductive carbon microfibers derived from wet-spun lignin/nanocellulose hydrogels. ACS Sustain Chem Eng. 2019;7:6013.

    Article  CAS  Google Scholar 

  70. Liu Y, Wu P. Bioinspired hierarchical liquid-metacrystal fibers for chiral optics and advanced textiles. Adv Funct Mater. 2020;30:2002193.

    Article  CAS  Google Scholar 

  71. Park J-S, Park C-W, Han S-Y, Lee E-A, Cindradewi AW, Kim J-K, Kwon G-J, Seo Y-H, Youe W-J, Gwon J, Lee S-H. Preparation and properties of wet-spun microcomposite filaments from cellulose nanocrystals and alginate using a microfluidic device. BioResources. 2021;16:5780.

    Article  CAS  Google Scholar 

  72. Liu J, Zhang R, Ci M, Sui S, Zhu P. Sodium alginate/cellulose nanocrystal fibers with enhanced mechanical strength prepared by wet spinning. J Eng Fibers Fabr. 2019;14:1.

    Google Scholar 

  73. Zhang M, Chen S, Sheng N, Wang B, Wu Z, Liang Q, Han Z, Wang H. Spinning continuous high-strength bacterial cellulose hydrogel fibers for multifunctional bioelectronic interfaces. J Mater Chem A. 2021;9:12574.

    Article  CAS  Google Scholar 

  74. Gao H-L, Zhao R, Cui C, Zhu Y-B, Chen S-M, Pan Z, Meng Y-F, Wen S-M, Liu C, Wu H-A, Yu S-H. Bioinspired hierarchical helical nanocomposite macrofibers based on bacterial cellulose nanofibers. Natl Sci Rev. 2020;7:73.

    Article  Google Scholar 

  75. Zhao X, Chen S, Wu Z, Sheng N, Zhang M, Liang Q, Han Z, Wang H. Toward continuous high-performance bacterial cellulose macrofibers by implementing grading-stretching in spinning. Carbohydr Polym. 2022;282: 119133.

    Article  CAS  Google Scholar 

  76. Cunha AG, Lundahl M, Ansari MF, Johansson L-S, Campbell JM, Rojas OJ. Surface structuring and water interactions of nanocellulose filaments modified with organosilanes toward wearable materials. ACS Appl Nano Mater. 2018;1:5279.

    Article  CAS  Google Scholar 

  77. Mohammadi P, Toivonen MS, Ikkala O, Wagermaier W, Linder MB. Aligning cellulose nanofibril dispersions for tougher fibers. Sci Rep. 2017;7:11860.

    Article  Google Scholar 

  78. Iwamoto S, Isogai A, Iwata T. Structure and mechanical properties of wet-spun fibers made from natural cellulose nanofibers. Biomacromol. 2011;12:831.

    Article  CAS  Google Scholar 

  79. Walther A, Timonen JVI, Diez I, Laukkanen A, Ikkala O. Multifunctional high-performance biofibers based on wet-extrusion of renewable native cellulose nanofibrils. Adv Mater. 2011;23:2924.

    Article  CAS  Google Scholar 

  80. Li Y, Zhu H, Shen F, Wan J, Han X, Dai J, Dai H, Hu L. Highly conductive microfiber of graphene oxide templated carbonization of nanofibrillated cellulose. Adv Funct Mater. 2014;24:7366.

    Article  CAS  Google Scholar 

  81. Li Y, Zhu H, Wang Y, Ray U, Zhu S, Dai J, Chen C, Fu K, Jang S-H, Henderson D, Li T, Hu L. Cellulose-nanofiber-enabled 3d printing of a carbon-nanotube microfiber network. Small Methods. 2017;1:1700222.

    Article  Google Scholar 

  82. Chang H, Chien A-T, Liu HC, Wang P-H, Newcomb BA, Kumar S. Gel spinning of polyacrylonitrile/cellulose nanocrystal composite fibers. ACS Biomater Sci Eng. 2015;1:610.

    Article  CAS  Google Scholar 

  83. Mohammadi P, Aranko AS, Landowski CP, Ikkala O, Jaudzems K, Wagermaier W, Linder MB. Biomimetic composites with enhanced toughening using silk-inspired triblock proteins and aligned nanocellulose reinforcements. Sci Adv. 2019;5:eaaw2541.

    Article  CAS  Google Scholar 

  84. Yao J, Ji P, Wang B, Wang H, Chen S. Color-tunable luminescent macrofibers based on cdte qds-loaded bacterial cellulose nanofibers for ph and glucose sensing. Sens Actuators, B. 2018;254:110.

    Article  CAS  Google Scholar 

  85. Yao J, Ji P, Sheng N, Guan F, Zhang M, Wang B, Chen S, Wang H. Hierarchical core-sheath polypyrrole@carbon nanotube/bacterial cellulose macrofibers with high electrochemical performance for all-solid-state supercapacitors. Electrochim Acta. 2018;283:1578.

    Article  CAS  Google Scholar 

  86. Yao J, Chen S, Chen Y, Wang B, Pei Q, Wang H. Macrofibers with high mechanical performance based on aligned bacterial cellulose nanofibers. ACS Appl Mater Interfaces. 2017;9:20330.

    Article  CAS  Google Scholar 

  87. Das P, Heuser T, Wolf A, Zhu B, Demco DE, Ifuku S, Walther A. Tough and catalytically active hybrid biofibers wet-spun from nanochitin hydrogels. Biomacromol. 2012;13:4205.

    Article  CAS  Google Scholar 

  88. Chen F, Zhu Y-J. Large-scale automated production of highly ordered ultralong hydroxyapatite nanowires and construction of various fire-resistant flexible ordered architectures. ACS Nano. 2016;10:11483.

    Article  CAS  Google Scholar 

  89. Li H, Zhu Y-J, Jiang Y-Y, Yu Y-D, Chen F, Dong L-Y, Wu J. Hierarchical assembly of monodisperse hydroxyapatite nanowires and construction of high-strength fire-resistant inorganic paper with high-temperature flexibility. Chemnanomat. 2017;3:259.

    Article  CAS  Google Scholar 

  90. Yang R-L, Zhu Y-J, Chen F-F, Qin D-D, Xiong Z-C. Bioinspired macroscopic ribbon fibers with a nacre-mimetic architecture based on highly ordered alignment of ultralong hydroxyapatite nanowires. ACS Nano. 2018;12:12284.

    Article  CAS  Google Scholar 

  91. Yu H-P, Zhu Y-J, Lu B-Q. Dental enamel-mimetic large-sized multi-scale ordered architecture built by a well controlled bottom-up strategy. Chem Eng J. 2019;360:1633.

    Article  CAS  Google Scholar 

  92. Reiser B, Gerstner D, Gonzalez-Garcia L, Maurer JHM, Kanelidis I, Kraus T. Spinning hierarchical gold nanowire microfibers by shear alignment and intermolecular self-assembly. ACS Nano. 2017;11:4934.

    Article  CAS  Google Scholar 

  93. Feng H, Yang Y, You Y, Li G, Guo J, Yu T, Shen Z, Wu T, Xing B. Simple and rapid synthesis of ultrathin gold nanowires, their self-assembly and application in surface-enhanced Raman scattering. Chem Commun. 2009; 1984.

  94. Miaudet P, Badaire S, Maugey M, Derre A, Pichot V, Launois P, Poulin P, Zakri C. Hot-drawing of single and multiwall carbon nanotube fibers for high toughness and alignment. Nano Lett. 2005;5:2212.

    Article  CAS  Google Scholar 

  95. Lee J, Lee D-M, Jung Y, Park J, Lee HS, Kim Y-K, Park CR, Jeong HS, Kim SM. Direct spinning and densification method for high-performance carbon nanotube fibers. Nat Commun. 2019;10:2962.

    Article  Google Scholar 

  96. Huang J, Li J, Xu X, Hua L, Lu Z. In situ loading of polypyrrole onto aramid nanofiber and carbon nanotube aerogel fibers as physiology and motion sensors. ACS Nano. 2022;16:8161.

    Article  CAS  Google Scholar 

  97. Marais A, Erlandsson J, Soderberg LD, Wagberg L. Coaxial spinning of oriented nanocellulose filaments and core-shell structures for interactive materials and fiber-reinforced composites. ACS Appl Nano Mater. 2020;3:10246.

    Article  CAS  Google Scholar 

  98. Mittal N, Benselfelt T, Ansari F, Gordeyeva K, Roth SV, Wagberg L, Soderberg LD. Ion-specific assembly of strong, tough, and stiff biofibers. Ange Chem Int Edit. 2019;58:18562.

    Article  CAS  Google Scholar 

  99. Hamedi MM, Hajian A, Fall AB, Hakansson K, Salajkova M, Lundell F, Wagberg L, Berglund LA. Highly conducting, strong nanocomposites based on nanocellulose-assisted aqueous dispersions of single-wall carbon nanotubes. ACS Nano. 2014;8:2467.

    Article  CAS  Google Scholar 

  100. Hakansson KMO, Fall AB, Lundell F, Yu S, Krywka C, Roth SV, Santoro G, Kvick M, Wittberg LP, Wagberg L, Soderberg LD. Hydrodynamic alignment and assembly of nanofibrils resulting in strong cellulose filaments. Nat Commun. 2014;5:4018.

    Article  Google Scholar 

  101. Fall AB, Lindstrom SB, Sundman O, Odberg L, Wagberg L. Colloidal stability of aqueous nanofibrillated cellulose dispersions. Langmuir. 2011;27:11332.

    Article  CAS  Google Scholar 

  102. Mittal N, Janson R, Widhe M, Benselfelt T, Hakansson KMO, Lundell F, Hedhammar M, Soderberg LD. Ultrastrong and bioactive nanostructured bio-based composites. ACS Nano. 2017;11:5148.

    Article  CAS  Google Scholar 

  103. Mittal N, Ansari F, Gowda KV, Brouzet C, Chen P, Larsson PT, Roth SV, Lundell F, Wagberg L, Kotov NA, Soderberg LD. Multiscale control of nanocellulose assembly: Transferring remarkable nanoscale fibril mechanics to macroscale fibers. ACS Nano. 2018;12:6378.

    Article  CAS  Google Scholar 

  104. Nechyporchuk O, Hakansson KMO, Gowda KV, Lundell F, Hagstrom B, Kohnke T. Continuous assembly of cellulose nanofibrils and nanocrystals into strong macrofibers through microfluidic spinning. Adv Mater Technol. 2019;4:1800557.

    Google Scholar 

  105. Abitbol T, Kam D, Levi-Kalisman Y, Gray DG, Shoseyov O. Surface charge influence on the phase separation and viscosity of cellulose nanocrystals. Langmuir. 2018;34:3925.

    Article  CAS  Google Scholar 

  106. Wagberg L, Decher G, Norgren M, Lindstroem T, Ankerfors M, Axnaes K. The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir. 2008;24:784.

    Article  Google Scholar 

  107. Wan ACA, Cutiongco MFA, Tai BCU, Leong MF, Lu HF, Yim EKF. Fibers by interfacial polyelectrolyte complexation - processes, materials and applications. Mater Today. 2016;19:437.

    Article  CAS  Google Scholar 

  108. Amaike M, Senoo Y, Yamamoto H. Sphere, honeycomb, regularly spaced droplet and fiber structures of polyion complexes of chitosan and gellan. Macromol Rapid Commun. 1998;19:287.

    Article  CAS  Google Scholar 

  109. Cai Y, Geng L, Chen S, Shi S, Peng XJAAM. Interfaces. Hierarchical assembly of nanocellulose into filaments by flow-assisted alignment and interfacial complexation: Conquering the conflicts between strength and toughness. ACS Appl Mater Interfaces. 2020;12:32090.

    Article  CAS  Google Scholar 

  110. Carvalho AJ, Trovatti G, Eliane G, Rafael G, Energy AJJoMCAMf, Sustainability. Continuous microfiber drawing by interfacial charge complexation between anionic cellulose nanofibers and cationic chitosan. J Mater Chem A. 2017;5:13098.

    Article  Google Scholar 

  111. Meier C, Welland ME. Wet-spinning of amyloid protein nanofibers into multifunctional high-performance biofibers. Biomacromol. 2011;12:3453.

    Article  CAS  Google Scholar 

  112. Toivonen MS, Kurki-Suonio S, Wagermaier W, Hynninen V, Hietala S, Ikkala O. Interfacial polyelectrolyte complex spinning of cellulose nanofibrils for advanced bicomponent fibers. Biomacromol. 2017;18:1293.

    Article  CAS  Google Scholar 

  113. Zhang K, Liimatainen H. Hierarchical assembly of nanocellulose-based filaments by interfacial complexation. Small. 2018;14:32090.

    Google Scholar 

  114. Nechyporchuk O, Bordes R, Kohnke T. Wet spinning of flame-retardant cellulosic fibers supported by interfacial complexation of cellulose nanofibrils with silica nanoparticles. ACS Appl Mater Interfaces. 2017;9:39069.

    Article  CAS  Google Scholar 

  115. Petchsang N, McDonald MP, Sinks LE, Kuno M. Light induced nanowire assembly: The electrostatic alignment of semiconductor nanowires into functional macroscopic yarns. Adv Mater. 2013;25:601.

    Article  CAS  Google Scholar 

  116. Martin CR. Nanomaterials - a membrane-based synthetic approach. Science. 1994;266:1961.

    Article  CAS  Google Scholar 

  117. Zhang Q, Wang X, Pan Z, Sun J, Zhao J, Zhang J, Zhang C, Tang L, Luo J, Song B, Zhang Z, Lu W, Li Q, Zhang Y, Yao Y. Wrapping aligned carbon nanotube composite sheets around vanadium nitride nanowire arrays for asymmetric coaxial fiber-shaped supercapacitors with ultrahigh energy density. Nano Lett. 2017;17:2719.

    Article  CAS  Google Scholar 

  118. Mirabedini A, Lu Z, Mostafavian S, Foroughi J. Triaxial carbon nanotube/conducting polymer wet-spun fibers supercapacitors for wearable electronics. Nanomaterials. 2021;11:3.

    Article  CAS  Google Scholar 

  119. Park KT, Lee T, Ko Y, Cho YS, Park CR, Kim H. High-performance thermoelectric fabric based on a stitched carbon nanotube fiber. ACS Appl Mater Interfaces. 2021;13:6257.

    Article  CAS  Google Scholar 

  120. Ma W, Li W, Li M, Mao Q, Pan Z, Hu J, Li X, Zhu M, Zhang Y. Unzipped carbon nanotube/graphene hybrid fiber with less “dead volume” for ultrahigh volumetric energy density supercapacitors. Adv Funct Mater. 2021;31:2100195.

    Article  CAS  Google Scholar 

  121. Meng C, Qian Y, He J, Dong X. Wet-spinning fabrication of multi-walled carbon nanotubes reinforced poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) hybrid fibers for high-performance fiber-shaped supercapacitor. J Mater Sci-Mater El. 2020;31:19293.

    Article  Google Scholar 

  122. Ren C, Yan Y, Sun B, Gu B, Chou T-W. Wet-spinning assembly and in situ electrodeposition of carbon nanotube-based composite fibers for high energy density wire-shaped asymmetric supercapacitor. J Colloid Interface Sci. 2020;569:298.

    Article  CAS  Google Scholar 

  123. Zheng T, Wang X, Liu Y, Bayaniahangar R, Li H, Lu C, Xu N, Yao Z, Qiao Y, Zhang D, Abadi PPSS. Polyaniline-decorated hyaluronic acid-carbon nanotube hybrid microfiber as a flexible supercapacitor electrode material. Carbon. 2020;159:65.

    Article  CAS  Google Scholar 

  124. Garcia-Torres J, Roberts AJ, Slade RCT, Crean C. One-step wet-spinning process of cb/cnt/mno2 nanotubes hybrid flexible fibres as electrodes for wearable supercapacitors. Electrochim Acta. 2019;296:481.

    Article  CAS  Google Scholar 

  125. Wang Y, Chen C, Xie H, Gao T, Yao Y, Pastel G, Han X, Li Y, Zhao J, Fu K, Hu L. 3d-printed all-fiber li-ion battery toward wearable energy storage. Adv Funct Mater. 2017;27:1703140.

    Article  Google Scholar 

  126. Nagaraju G, Sekhar SC, Yu JS. Utilizing waste cable wires for high-performance fiber-based hybrid supercapacitors: an effective approach to electronic-waste management. Adv Energy Mater. 2018;8:2100195.

    Article  Google Scholar 

  127. Jing C, Liu W, Hao H, Wang H, Meng F, Lau D. Regenerated and rotation-induced cellulose-wrapped oriented cnt fibers for wearable multifunctional sensors. Nanoscale. 2020;12:16305.

    Article  CAS  Google Scholar 

  128. Sun L, Huang H, Ding Q, Guo Y, Sun W, Wu Z, Qin M, Guan Q, You Z. Highly transparent, stretchable, and self-healable ionogel for multifunctional sensors, triboelectric nanogenerator, and wearable fibrous electronics. Adv Fiber Mater. 2021;4:98.

    Article  Google Scholar 

  129. Zhou J, Xu X, Xin Y, Lubineau G. Coaxial thermoplastic elastomer-wrapped carbon nanotube fibers for deformable and wearable strain sensors. Adv Funct Mater. 2018;28:1705591.

    Article  Google Scholar 

  130. Cao W-T, Ma C, Mao D-S, Zhang J, Ma M-G, Chen F. Mxene-reinforced cellulose nanofibril inks for 3d-printed smart fibres and textiles. Adv Funct Mater. 2019;29:1905898.

    Article  CAS  Google Scholar 

  131. Lee JY, Cho D-g, Cho S-P, Choi J-H, Sung SJ, Hong S, Yu W-R. Semiconducting carbon nanotube fibers for electrochemical biosensor platforms. Mater Des. 2020;192:108740.

    Article  CAS  Google Scholar 

  132. Cho S-Y, Yu H, Choi J, Kang H, Park S, Jang J-S, Hong H-J, Kim I-D, Lee S-K, Jeong HS, Jung H-T. Continuous meter-scale synthesis of weavable tunicate cellulose/carbon nanotube fibers for high-performance wearable sensors. ACS Nano. 2019;13:9332.

    Article  CAS  Google Scholar 

  133. Fahma F, Lisdayana N, Abidin Z, Noviana D, Sari YW, Mukti RR, Yunus M, Kusumaatmaja A, Kadja GTM. Nanocellulose-based fibres derived from palm oil by-products and their in vitro biocompatibility analysis. J Text Inst. 2020;111:1354.

    Article  CAS  Google Scholar 

  134. Guan Q-F, Han Z-M, Zhu Y, Xu W-L, Yang H-B, Ling Z-C, Yan B-B, Yang K-P, Yin C-H, Wu H, Yu S-H. Bio-inspired lotus-fiber-like spiral hydrogel bacterial cellulose fibers. Nano Lett. 2021;21:952.

    Article  CAS  Google Scholar 

  135. Liu M, Zhang Y, Liu K, Zhang G, Mao Y, Chen L, Peng Y, Tao TH. Biomimicking antibacterial opto-electro sensing sutures made of regenerated silk proteins. Adv Mater. 2020;33:2004733.

    Article  Google Scholar 

  136. Mertaniemi H, Escobedo-Lucea C, Sanz-Garcia A, Gandia C, Makitie A, Partanen J, Ikkala O, Yliperttula M. Human stem cell decorated nanocellulose threads for biomedical applications. Biomaterials. 2016;82:208.

    Article  CAS  Google Scholar 

  137. Xiang S, Zhang N, Fan X. From fiber to fabric: progress towards photovoltaic energy textile. Adv Fiber Mater. 2021;3:76.

    Article  CAS  Google Scholar 

  138. Shi Q, Sun J, Hou C, Li Y, Zhang Q, Wang H. Advanced functional fiber and smart textile. Adv Fiber Mater. 2019;1:3.

    Article  Google Scholar 

  139. Wu R, Ma L, Liu XY. From mesoscopic functionalization of silk fibroin to smart fiber devices for textile electronics and photonics. Adv Sci. 2022;9:2103981.

    Article  CAS  Google Scholar 

  140. Ding T, Chan KH, Zhou Y, Wang X-Q, Cheng Y, Li T, Ho GW. Scalable thermoelectric fibers for multifunctional textile-electronics. Nat Commun. 2020;11:6006.

    Article  CAS  Google Scholar 

  141. Wang L, Fu X, He J, Shi X, Chen T, Chen P, Wang B, Peng H. Application challenges in fiber and textile electronics. Adv Mater. 2020;32:1901971.

    Article  CAS  Google Scholar 

  142. Dhanabalan SC, Dhanabalan B, Chen X, Ponraj JS, Zhang H. Hybrid carbon nanostructured fibers: stepping stone for intelligent textile-based electronics. Nanoscale. 2019;11:3046.

    Article  CAS  Google Scholar 

  143. Di J, Zhang X, Yong Z, Zhang Y, Li D, Li R, Li Q. Carbon-nanotube fibers for wearable devices and smart textiles. Adv Mater. 2016;28:10529.

    Article  CAS  Google Scholar 

  144. Shin Y-E, Cho JY, Yeom J, Ko H, Han JT. Electronic textiles based on highly conducting poly(vinyl alcohol)/carbon nanotube/silver nanobelt hybrid fibers. ACS Appl Mater Interfaces. 2021;13:31051.

    Article  CAS  Google Scholar 

  145. Wang C, He T, Cheng J, Guan Q, Wang B. Bioinspired interface design of sewable, weavable, and washable fiber zinc batteries for wearable power textiles. Adv Funct Mater. 2020;30:2004430.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (52202108, 31771081), and the Science and Technology Commission of Shanghai Municipality (22S31903300), S&T Innovation 2025 Major Special Program of Ningbo (2018B10040), the Fundamental Research Funds for the Central Universities (22120210582), and China Postdoctoral Science Foundation (2021TQ0247, 2022M712395).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daxiang Cui or Feng Chen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, W., Zhao, X., Lu, B. et al. Assembly of Nanowires into Macroscopic One-Dimensional Fibers in Liquid State. Adv. Fiber Mater. 5, 928–954 (2023). https://doi.org/10.1007/s42765-023-00265-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-023-00265-9

Keywords

Navigation