Skip to main content

Advertisement

Log in

High Solar Energy Absorption and Human Body Radiation Reflection Janus Textile for Personal Thermal Management

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

A large of energy consumption is required for indoor and outdoor personal heating to ameliorate the comfortable and healthy conditions. Main personal thermal management strategy is to reflect mid-infrared human body radiation for human surface temperature (THS) regulation. We demonstrate a visible Janus light absorbent/reflective air-layer fabric (Janus A/R fabric) that can passively reflect radiative heating meanwhile can actively capture the solar energy. A series of azobenzene derivatives functionalized with alkyl tails are reported to co-harvest the solar and phase-change energy. The THS covered by Janus A/R fabric can be heated up to ~ 3.7 °C higher than that covered by air-layer fabric in cold environment (5 °C). Besides, integrating the thermo- and photo-chromic properties is capable of monitoring comfort THS and residue energy storage enthalpy, respectively. According to the colour monitors, intermittent irradiation approach is proposed to prolong comfortable-THS holding time for managing energy efficiently.

Graphical Abstract

For the personal thermal management, we fabricate a visible Janus light absorbent/reflective fabric, which can actively capture solar energy and passively reflect the human radiation reflection (MIR). The solar energy can be released as heat to actively warm human surface temperature up, and the reflective MIR can passively heat the human body. The surface temperature and residue energy storage can be monitored by distinct colour change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data is available when required.

References

  1. Raman AP, Anoma MA, Zhu L, Rephaeli E, Fan S. Passive radiative cooling below ambient air temperature under direct sunlight. Nature. 2014;515:540.

    Article  CAS  Google Scholar 

  2. Hsu P-C, Song AY, Catrysse PB, Liu C, Peng Y, Xie J, Fan S, Cui Y. Radiative human body cooling by nanoporous polyethylene textile. Science. 2016;353:1019.

    Article  CAS  Google Scholar 

  3. Zhu B, Li W, Zhang Q, Li D, Liu X, Wang YX, Xu N, Wu Z, Li JL, Li XQ, Catrysse PB, Xu WL, Fan SH, Zhu J. Subambient daytime radiative cooling textile based on nanoprocessed silk. Nat Nanotechnol. 2021;16:1342.

    Article  CAS  Google Scholar 

  4. Wang X, Zhang Q, Wang S, Jin C, Zhu B, Su Y, Dong X, Liang J, Lu Z, Zhou L, Li W, Zhu S, Zhu J. Sub-ambient full-color passive radiative cooling under sunlight based on efficient quantum-dot photoluminescence. Sci Bull. 1874;2022:67.

    Google Scholar 

  5. Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F. Ecological Responses to Recent Climate Change. Nature. 2002;416:389.

    Article  CAS  Google Scholar 

  6. Oreskes N. Beyond the ivory tower - the scientific consensus on climate change. Science. 2004;306:1686.

    Article  CAS  Google Scholar 

  7. Mallapaty S. How China could be carbon neutral by mid-century. Nature. 2020;586:482.

    Article  CAS  Google Scholar 

  8. Kishore RA, Bianchi MVA, Booten C, Vidal J, Jackson R. Enhancing building energy performance by effectively using phase change material and dynamic insulation in walls. Appl Energy. 2021;283: 116306.

    Article  Google Scholar 

  9. Verichev K, Zamorano M, Fuentes-Sepulveda A, Cardenas N, Carpio M. Adaptation and mitigation to climate change of envelope wall thermal insulation of residential buildings in a temperate oceanic climate. Energy Build. 2021;235: 110719.

    Article  Google Scholar 

  10. Kaushika ND, Sumathy K. Solar transparent insulation materials: a review. Renew Sustain Energy Rev. 2003;7:317.

    Article  CAS  Google Scholar 

  11. Cui Y, Gong H, Wang Y, Li D, Bai H. A thermally insulating textile inspired by polar bear hair. Adv Mater. 2018;30:1706807.

    Article  Google Scholar 

  12. Yang A, Cai L, Zhang R, Wang J, Hsu P-C, Wang H, Zhou G, Xu J, Cui Y. Thermal management in nanofiber-based face mask. Nano Lett. 2017;17:3506.

    Article  CAS  Google Scholar 

  13. Zhang X, Liu C, Shen C, Liu X. Promising commercial fabrics with radiative cooling for personal thermal management. Sci Bull. 2022;67:229.

    Article  Google Scholar 

  14. Wu J, Zhang M, Su M, Zhang Y, Liang J, Zeng S, Chen B, Cui L, Hou C, Tao G. Robust and Flexible Multimaterial Aerogel Fabric toward Outdoor Passive Heating. Adv. Fiber Mater. 2022.

  15. Hsu P-C, Liu X, Liu C, Xie X, Lee HR, Welch AJ, Zhao T, Cui Y. Personal Thermal Management by Metallic Nanowire-Coated Textile. Nano Lett. 2015;15:365.

    Article  CAS  Google Scholar 

  16. Luo H, Zhu Y, Xu Z, Hong Y, Ghosh P, Kaur S, Wu M, Yang C, Qiu M, Li Q. Outdoor Personal Thermal Management with Simultaneous Electricity Generation. Nano Lett. 2021;21:3879.

    Article  CAS  Google Scholar 

  17. Chu S, Majumdar A. Opportunities and Challenges for a Sustainable Energy Future. Nature. 2012;488:294.

    Article  CAS  Google Scholar 

  18. Farinotti D, Round V, Huss M, Compagno L, Zekollari H. Large Hydropower and Water-Storage Potential in Future Glacier-Free Basins. Nature. 2019;575:341.

    Article  CAS  Google Scholar 

  19. Kraemer D, Poudel B, Feng H-P, Caylor JC, Yu B, Yan X, Ma Y, Wang X, Wang D, Muto A, McEnaney K, Chiesa M, Ren Z, Chen G. High-Performance Flat-Panel Solar Thermoelectric Generators with High Thermal Concentration. Nat Mater. 2011;10:532.

    Article  CAS  Google Scholar 

  20. Hu J, Huang S, Yu M, Yu H. Flexible Solar Thermal Fuel Devices: Composites of Fabric and a Photoliquefiable Azobenzene Derivative. Adv Energy Mater. 2019;9:1901363.

    Article  CAS  Google Scholar 

  21. Moth-Poulsen K, Coso D, Borjesson K, Vinokurov N, Meier SK, Majumdar A, Vollhardt KPC, Segalman RA. Molecular Solar Thermal (MOST) Energy Storage and Release System. Energy Environ Sci. 2012;5:8534.

    Article  CAS  Google Scholar 

  22. Wang Z, Roffey A, Losantos R, Lennartson A, Jevric M, Petersen AU, Quant M, Dreos A, Wen X, Sampedro D, Borjesson K, Moth-Poulsen K. Macroscopic Heat Release in a Molecular Solar Thermal Energy Storage System. Energy Environ Sci. 2019;12:187.

    Article  CAS  Google Scholar 

  23. Shi Y, Gerkman MA, Qiu Q, Zhang S, Han GGD. Sunlight-Activated Phase Change Materials for Controlled Heat Storage and Triggered Release Dagger. J Mater Chem A. 2021;9:9798.

    Article  CAS  Google Scholar 

  24. Dong LQ, Feng YY, Wang L, Feng W. Azobenzene-Based Solar Thermal Fuels: Design, Properties, and Applications. Chem Soc Rev. 2018;47:7339.

    Article  CAS  Google Scholar 

  25. Zhang ZY, He YX, Zhou Y, Yu CY, Han L, Li T. Pyrazolylazophenyl Ether-Based Photoswitches: Facile Synthesis, (near-)Quantitative Photoconversion, Long Thermal Half-Life, Easy Functionalization, and Versatile Applications in Light-Responsive Systems. Chem Eur J. 2019;25:13402.

    Article  CAS  Google Scholar 

  26. Xu X, Wu B, Zhang P, Yu H, Wang G. Molecular Solar Thermal Storage Enhanced by Hyperbranched Structures. Sol RRL. 2020;4:1900422.

    Article  CAS  Google Scholar 

  27. Wang Z, Udmark J, Boerjesson K, Rodrigues R, Roffey A, Abrahamsson M, Nielsen MB, Moth-Poulsen K. Evaluating Dihydroazulene/Vinylheptafulvene Photoswitches for Solar Energy Storage Applications. Chemsuschem. 2017;10:3049.

    Article  CAS  Google Scholar 

  28. Broman SL, Nielsen MB. Dihydroazulene: From Controlling Photochromism to Molecular Electronics Devices. Phys Chem Phys. 2014;16:21172.

    Article  CAS  Google Scholar 

  29. Borjesson K, Dzebo D, Albinsson B, Moth-Poulsen K. Photon Upconversion Facilitated Molecular Solar Energy Storage. J Mater Chem A. 2013;1:8521.

    Article  Google Scholar 

  30. Manso M, Petersen AU, Wang Z, Erhart P, Nielsen MB, Moth-Poulsen K. Molecular Solar Thermal Energy Storage in Photoswitch Oligomers Increases Energy Densities and Storage Times. Nat Commun. 1945;2018:9.

    Google Scholar 

  31. Petersen AU, Hofmann AI, Fillols M, Manso M, Jevric M, Wang Z, Sumby CJ, Muller C, Moth-Poulsen K. Solar Energy Storage by Molecular Norbornadiene-Quadricyclane Photoswitches: Polymer Film Devices. Adv Sci. 2019;6:1900367.

    Article  Google Scholar 

  32. Waidhas F, Jevric M, Fromm L, Bertram M, Görling A, Moth-Poulsen K, Brummel O, Libuda J. Electrochemically Controlled Energy Storage in a Norbornadiene-Based Solar Fuel with 99% Reversibility. Nano Energy. 2019;63: 103872.

    Article  CAS  Google Scholar 

  33. Gerkman MA, Gibson RSL, Calbo J, Shi Y, Fuchter MJ, Han GGD. Arylazopyrazoles for Long-Term Thermal Energy Storage and Optically Triggered Heat Release Below 0 Degrees C. J Am Chem Soc. 2020;142:8688.

    Article  Google Scholar 

  34. Liu H, Tang J, Dong L, Wang H, Xu T, Gao W, Zhai F, Feng Y, Feng W. Optically Triggered Synchronous Heat Release of Phase-Change Enthalpy and Photo-Thermal Energy in Phase-Change Materials at Low Temperatures. Adv Funct Mater. 2020;31:2008496.

    Article  Google Scholar 

  35. Wang H, Feng Y, Yu H, Dong L, Zhai F, Tang J, Ge J, Feng W. Utilisation of Photo-Thermal Energy and Bond Enthalpy Based on Optically Triggered Formation and Dissociation of Coordination Bonds. Nano Energy. 2021;89: 106401.

    Article  CAS  Google Scholar 

  36. Zhang ZY, He Y, Wang Z, Xu J, Xie M, Tao P, Ji D, Moth-Poulsen K, Li T. Photochemical Phase Transitions Enable Coharvesting of Photon Energy and Ambient Heat for Energetic Molecular Solar Thermal Batteries That Upgrade Thermal Energy. J Am Chem Soc. 2020;142:12256.

    Article  CAS  Google Scholar 

  37. Zhao Z, Cui Y, Kong Y, Ren J, Jiang X, Yan W, Li M, Tang J, Liu X, Shen X. Thermal and Mechanical Performances of the Superflexible, Hydrophobic, Silica-Based Aerogel for Thermal Insulation at Ultralow Temperature. ACS Appl Mater Interfaces. 2021;13:21286.

    Article  CAS  Google Scholar 

  38. Ding J, Wu X, Shen X, Cui S, Zhong Y, An C, Cui Y, Chen X. Synthesis and Textural Evolution of Mesoporous Si3n4 Aerogel with High Specific Surface Area and Excellent Thermal Insulation Property Via the Urea Assisted Sol-Gel Technique. Chem Eng J. 2020;382: 122880.

    Article  CAS  Google Scholar 

  39. Guo Z, Sun C, Wang J, Cai Z, Ge F. High-Performance Laminated Fabric with Enhanced Photothermal Conversion and Joule Heating Effect for Personal Thermal Management. ACS Appl Mater Interfaces. 2021;13:8851.

    Article  CAS  Google Scholar 

  40. Xue T, Zhu C, Feng X, Wali Q, Fan W, Liu T. Polyimide Aerogel Fibers with Controllable Porous Microstructure for Super-Thermal Insulation under Extreme Environments. Adv Fiber Mater. 2022;2:338.

    Google Scholar 

  41. Zhang W, Ji X, Peng B-J, Che S, Ge F, Liu W, Al-Hashimi M, Wang C, Fang L. High-Performance Thermoresponsive Dual-Output Dye System for Smart Textile Application. Adv Funct Mater. 2020;30:1906463.

    Article  CAS  Google Scholar 

  42. Sun M, Lv J, Xu H, Zhang L, Zhong Y, Chen Z, Sui X, Wang B, Feng X, Mao Z. Smart Cotton Fabric Screen-Printed with Viologen Polymer: Photochromic. Thermochromic and Ammonia Sensing Cellulose. 2020;27:2939.

    CAS  Google Scholar 

  43. Geng XY, Li W, Wang Y, Lu JW, Wang JP, Wang N, Li JJ, Zhang XX. Reversible Thermochromic Microencapsulated Phase Change Materials for Thermal Energy Storage Application in Thermal Protective Clothing. Appl Energ. 2018;217:281.

    Article  CAS  Google Scholar 

  44. Zhang W, Wang C, Chen K, Yin Y. Raspberry-Shaped Thermochromic Energy Storage Nanocapsule with Tunable Sunlight Absorption Based on Color Change for Temperature Regulation. Small. 2019;15:1903750.

    Article  CAS  Google Scholar 

  45. Fei L, Yin Y, Zhang J, Wang C. A Visible Energy Management by Photochromic Solar Thermal Fuel Using a Color Display. Sol RRL. 2020;4:2000499.

    Article  CAS  Google Scholar 

  46. Fei L, Yin Y, Yang M, Zhang S, Wang C. Wearable Solar Energy Management Based on Visible Solar Thermal Energy Storage for Full Solar Spectrum Utilization. Energy Storage Mater. 2021;42:636.

    Article  Google Scholar 

  47. Ishiba K, Morikawa M, Chikara C, Yamada T, Iwase K, Kawakita M, Kimizuka N. Photoliquefiable Ionic Crystals: A Phase Crossover Approach for Photon Energy Storage Materials with Functional Multiplicity. Angew Chemie - Int Ed. 2015;54:1532.

    Article  CAS  Google Scholar 

  48. Du Y, Zhang X, Wang J, Liu Z, Zhang K, Ji X, You Y, Zhang X. Reaction-Spun Transparent Silica Aerogel Fibers. ACS Nano. 2020;14:11919.

    Article  CAS  Google Scholar 

  49. Wang J, Petit D, Ren S. Transparent Thermal Insulation Silica Aerogels. Nanoscale Adv. 2020;2:5504.

    Article  CAS  Google Scholar 

  50. He Y, Shangguan Z, Zhang ZY, Xie M, Yu C, Li T. Azobispyrazole Family as Photoswitches Combining (near-) Quantitative Bidirectional Isomerization and Widely Tunable Thermal Half-Lives from Hours to Years. Angew Chemie - Int Ed. 2021;60:16539.

    Article  CAS  Google Scholar 

  51. Bandara HMD, Burdette SC. Photoisomerization in Different Classes of Azobenzene. Chem Soc Rev. 1809;2012:41.

    Google Scholar 

  52. Cai F, Chen YX, Wang WZ, Yu HF. Macroscopic Regulation of Hierarchical Nanostructures in Liquid-Crystalline Block Copolymers Towards Functional Materials. Chinese J Polym Sci. 2021;39:397.

    Article  CAS  Google Scholar 

  53. Stuart CM, Frontiera RR, Mathies RA. Excited-State Structure and Dynamics of Cis- and Trans-Azobenzene from Resonance Raman Intensity Analysis. J Phys Chem A. 2007;111:12072.

    Article  CAS  Google Scholar 

  54. Zheng YB, Payton JL, Chung CH, Liu R, Cheunkar S, Pathem BK, Yang Y, Jensen L, Weiss PS. Surface-Enhanced Raman Spectroscopy to Probe Reversibly Photoswitchable Azobenzene in Controlled Nanoscale Environments. Nano Lett. 2011;11:3447.

    Article  CAS  Google Scholar 

  55. Puupponen S, Seppala A. Cold-Crystallization of Polyelectrolyte Absorbed Polyol for Long-Term Thermal Energy Storage. Sol Energy Mater Sol Cells. 2018;180:59.

    Article  CAS  Google Scholar 

  56. Bortolus P, Monti S. Cis-Trans Photoisomerization of Azobenzene. Solvent and Triplet Donors Effects. J. Phys. Chem. 1979, 83: 648.

  57. Lv JA, Liu Y, Wei J, Chen E, Qin L, Yu Y. Photocontrol of Fluid Slugs in Liquid Crystal Polymer Microactuators. Nature. 2016;537:179.

    Article  CAS  Google Scholar 

  58. Murthy SSN, Gangasharan, Nayak SK. Novel Differential Scanning Calorimetric Studies of Supercooled Organic Liquids. J. Chem. Soc.-Faraday Trans. 1993, 89: 509.

  59. Lu Y, Xiao X, Fu J, Huan C, Qi S, Zhan Y, Zhu Y, Xu G. Novel Smart Textile with Phase Change Materials Encapsulated Core-Sheath Structure Fabricated by Coaxial Electrospinning. Chem Eng J. 2019;355:532.

    Article  CAS  Google Scholar 

  60. Zhang N, Yuan Y, Cao X, Du Y, Zhang Z, Gui Y. Latent Heat Thermal Energy Storage Systems with Solid-Liquid Phase Change Materials: A Review. Adv Eng Mater. 2018;20:201700753.

    Article  Google Scholar 

  61. Zalba B, Marin JM, Cabeza LF, Mehling H. Review on Thermal Energy Storage with Phase Change: Materials, Heat Transfer Analysis and Applications. Appl Therm Eng. 2003;23:251.

    Article  CAS  Google Scholar 

  62. Han GGD, Deru JH, Cho EN, Grossman JC. Optically-Regulated Thermal Energy Storage in Diverse Organic Phase-Change Materials. Chem Commun. 2018;54:10722.

    Article  CAS  Google Scholar 

  63. Pakdel E, Naebe M, Sun L, Wang X. Advanced Functional Fibrous Materials for Enhanced Thermoregulating Performance. ACS Appl Mater Interfaces. 2019;11:13039.

    Article  CAS  Google Scholar 

  64. Saydjari AK, Weis P, Wu S. Spanning the Solar Spectrum: Azopolymer Solar Thermal Fuels for Simultaneous UV and Visible Light Storage. Adv Energy Mater. 2017;7:1601622.

    Article  Google Scholar 

  65. Gueymard CA. The Sun’s Total and Spectral Irradiance for Solar Energy Applications and Solar Radiation Models. Sol Energy. 2004;76:423.

    Article  Google Scholar 

  66. Fei L, Yin Y, Wagner M, Wang C. Insight into Relation between Optically-Switched Foam Stability and Isomerization Kinetic from Azobenzene-Based Sulfate Surfactant. Colloid Surface A. 2020;606: 125426.

    Article  CAS  Google Scholar 

  67. Chen S, Zhang Y, Chen K, Yin Y, Wang C. Insight into a Fast-Phototuning Azobenzene Switch for Sustainably Tailoring the Foam Stability. ACS Appl Mater Interfaces. 2017;9:13778.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support of National Natural Science Foundation of China (21975107), Natural Science Foundation of Jiangsu Province (SBK2019020945), National First-Class Discipline Program of Light Industry Technology and Engineering (LITE2018-21), Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX20_1783), and China Scholarship Council (202006790096).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunjie Yin or Chaoxia Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 10712 kb)

Supplementary file2 (MP4 9306 kb)

Supplementary file3 (MP4 9533 kb)

Supplementary file4 (MP4 10700 kb)

Supplementary file5 (MP4 6587 kb)

Supplementary file6 (DOCX 4803 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fei, L., Yu, W., Tan, J. et al. High Solar Energy Absorption and Human Body Radiation Reflection Janus Textile for Personal Thermal Management. Adv. Fiber Mater. 5, 955–967 (2023). https://doi.org/10.1007/s42765-023-00264-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-023-00264-w

Keywords

Navigation