Skip to main content

Advertisement

Log in

Temperature-Gated Light-Guiding Hydrogel Fiber for Thermoregulation During Optogenetic Neuromodulation

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

With the rise of optogenetic manipulation of neurons, the effects of optogenetic heating on temperature-sensitive physiological processes, and the damage to surrounding tissues have been neglected. This manuscript reports the fabrication of a highly temperature-sensitive semi-interpenetrating optical hydrogel fiber (TSOHF) using the integrated dynamic wet-spinning technique. TSOHF exhibits a structural tunable diameter, clear core/sheath structure, tunable temperature-sensitivity, excellent light propagation property (0.35 dB cm− 1, 650 nm laser light), and good biocompatibility (including tissue-like Young’s modulus, stable dimensional stability, and low cytotoxicity). Based on these properties, a potential application of optogenetic regulation of neural tissue (hypoglossal nerve), with controllable temperature using TSOHF was designed and performed. Further, this work provides new insight into molecular design and a practical approach to continually manufacture a temperature-sensitive hydrogel optical fiber for applications in intelligent photomedicine.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jiang S, Wu X, Rommelfanger JN, Ou ZH, Hong GS. Shedding light on neurons: optical approaches for neuromodulation. Natl Sci Rev. 2022;9:nwac007.

    Article  CAS  Google Scholar 

  2. Henry R, Deckert M, Guruviah V, Schmidt B. Review of neuromodulation techniques and technological limitations. Iete Tech Rev. 2016;33:368–77.

    Article  Google Scholar 

  3. Park S, Yuk H, Zhao RK, Yim YS, Woldeghebriel EW, Kang J, Canales A, Fink Y, Choi BG, Zhao XH, Anikeeva P. Adaptive and multifunctional hydrogel hybrid probes for long-term sensing and modulation of neural activity. Nat Commun. 2021;12:3435.

    Article  CAS  Google Scholar 

  4. Vitale F, Summerson RS, Aazhang B, Kemere C, Pasquali M. Neural stimulation and recording with bidirectional, soft carbon nanotube fiber microelectrodes. ACS Nano. 2015;9:4465–74.

    Article  CAS  Google Scholar 

  5. Nazempour R, Zhang BZ, Ye ZY, Yin L, Lv XL, Sheng X. Emerging applications of optical fiber-based devices for brain research. Adv Fiber Mater. 2021;4:24–42.

    Article  Google Scholar 

  6. Boyden SE, Zhang F, Bamberg E, Nagel G, Deisseroth K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci. 2005;8:1263–8.

    Article  CAS  Google Scholar 

  7. Deisseroth K. Optogenetics. Nat Methods. 2011;8:26–9.

    Article  CAS  Google Scholar 

  8. Yang Q, Song D, Xie Z, He G, Zhao J, Wang Z, Dong Z, Zhang H, Yang L, Jiang M, Wu Y, Shi Q, Li J, Yang J, Bai Z, Quan Z, Qing H. Optogenetic stimulation of CA3 pyramidal neurons restores synaptic deficits to improve spatial short-term memory in APP/PS1 mice. Prog Neurobiol. 2022;209:102209.

    Article  CAS  Google Scholar 

  9. Mickle AD, Won SM, Noh KN, Yoon J, Meacham KW, Xue Y, McIlvried LA, Copits BA, Samineni VK, Crawford KE, Kim DH, Srivastava P, Kim BH, Min S, Shiuan Y, Yun Y, Payne MA, Zhang J, Jang H, Li Y, Lai HH, Huang Y, Park SI, Gereau RW, Rogers JA. A wireless closed-loop system for optogenetic peripheral neuromodulation. Nature. 2019;565(7739):361–5.

    Article  CAS  Google Scholar 

  10. Ward PJ, Jones LN, Mulligan A, Goolsby W, Wilhelm JC, English AW. Optically-induced neuronal activity is sufficient to promote functional motor axon regeneration in vivo. PLoS ONE. 2016;11(5):16.

    Article  Google Scholar 

  11. Owen SF, Liu MH, Kreitzer AC. Thermal constraints on in vivo optogenetic manipulations. Nat Neurosci. 2019;22:1061–5.

    Article  CAS  Google Scholar 

  12. Stujenske JM, Spellman T, Gordon JA. Modeling the spatiotemporal dynamics of light and heat propagation for in vivo optogenetics. Cell Rep. 2015;12:525–34.

    Article  CAS  Google Scholar 

  13. Yizhar O, Fenno EL, Davidson JT, Mogri M, Deisseroth K. Optogenetics in neural systems. Neuron. 2011;71:9–34.

    Article  CAS  Google Scholar 

  14. Yang F, Zheng J. High temperature sensitivity is intrinsic to voltage-gated potassium channels. Elife. 2014;3:e03255.

    Article  Google Scholar 

  15. Sabatini BL, Regehr WG. Timing of neurotransmission at fast synapses in the mammalian brain. Nature. 1996;384:170–2.

    Article  CAS  Google Scholar 

  16. Moser E, Mathiesen I, Andersen P. Association between brain temperature and dentate field potentials in exploring and swimming rats. Science. 1993;259:1324–6.

    Article  CAS  Google Scholar 

  17. Peters K. Polymer optical fiber sensors—a review. Smart Mater Struct. 2011;20:013002.

    Article  Google Scholar 

  18. Canales A, Jia XT, Froriep PU, Koppes AR, Tringides MC, Selvidge J, Lu C, Hou C, Wei L, Fink Y, Anikeeva P. Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nat Biotechnol. 2015;33:277–84.

    Article  CAS  Google Scholar 

  19. Lou Y, Wu D, Pang Y. Optical trapping and manipulation using optical fibers. Adv Fiber Mater. 2019;4:83–100.

    Article  Google Scholar 

  20. Choi M, Choi JW, Kim S, Nizamoglu S, Hahn SK, Yun SH. Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo. Nat Photonics. 2013;7:987–94.

    Article  CAS  Google Scholar 

  21. Nizamoglu S, Gather CM, Humar M, Choi M, Kim S, Kim KS, Hahn SK, Scarcelli G, Randolph M, Redmond WR, Yun SH. Bioabsorbable polymer optical waveguides for deep-tissue photomedicine. Nat Commun. 2016;7:10374.

    Article  CAS  Google Scholar 

  22. Yuk H, Lu B, Zhao XH. Hydrogel bioelectronics. Chem Soc Rev. 2019;48:1642–67.

    Article  CAS  Google Scholar 

  23. Yetisen AK, Jiang N, Fallahi A, Montelongo Y, Ruiz-Esparza UG, Tamayol A, Zhang YS, Mahmood I, Yang SA, Kim KS, Butt H. Glucose-sensitive hydrogel optical fibers functionalized with phenylboronic acid. Adv Mater. 2017;29:1606380.

    Article  Google Scholar 

  24. Chen T, Qiao XL, Wei PL, Chen GY, Mugaanire TI, Hou K, Zhu MF. Tough gel-fibers as strain sensors based on strain–optics conversion induced by anisotropic structural evolution. Chem Mater. 2020;32:9675–87.

    Article  CAS  Google Scholar 

  25. Choi M, Humar M, Kim S, Yun SH. Step-index optical fiber made of biocompatible hydrogels. Adv Mater. 2015;27:4081–6.

    Article  CAS  Google Scholar 

  26. Xia MG, Wu WJ, Liu FW, Theato P, Zhu MF. Swelling behavior of thermosensitive nanocomposite hydrogels composed of oligo(ethylene glycol) methacrylates and clay. Eur Polym J. 2015;69:472–82.

    Article  CAS  Google Scholar 

  27. Xia MG, Cheng YH, Meng ZQ, Jiang XZ, Chen ZG, Theato P, Zhu MF. A novel nanocomposite hydrogel with precisely tunable UCST and LCST. Macromol Rapid Commun. 2015;36:477–82.

    Article  CAS  Google Scholar 

  28. Sun ST, Wu PY. On the thermally reversible dynamic hydration behavior of oligo(ethylene glycol) methacrylate-based polymers in water. Macromolecules. 2012;46:236–46.

    Article  Google Scholar 

  29. Chen GY, Wang G, Tan XR, Hou K, Meng QS, Zhao P, Wang S, Zhang JY, Zhou Z, Chen T, Cheng YH, Hsiao SB, Reichmanis E, Zhu MF. Integrated dynamic wet spinning of core-sheath hydrogel fibers for optical-to-brain/tissue communications. Natl Sci Rev. 2020;8:nwaa209.

    Article  Google Scholar 

  30. Jiang N, Ahmed R, Rifat AA, Guo JJ, Yin YX, Montelongo Y, Butt H, Yetisen KA. Functionalized flexible soft polymer optical fibers for laser photomedicine. Adv Opt Mater. 2018;6:1701118.

    Article  Google Scholar 

  31. Guo JJ, Liu XY, Jiang N, Yetisen KA, Yuk H, Yang CX, Khademhosseini A, Zhao XH, Yun SH. Highly stretchable, strain sensing hydrogel optical fibers. Adv Mater. 2016;28:10244–9.

    Article  CAS  Google Scholar 

  32. Kajbafzadeh AM, Javan-Farazmand Ni, Monajemzadeh M, Baghayee A. Determining the optimal decellularization and sterilization protocol for preparing a tissue scaffold of a human-sized liver tissue. Tissue Eng Part C Methods. 2013;19:642–51.

    Article  CAS  Google Scholar 

  33. Rashid B, Destrade M, Gilchrist MD. Mechanical characterization of brain tissue in tension at dynamic strain rates. J Mech Behav Biomed Mater. 2014;33:43–54.

    Article  Google Scholar 

  34. Engler JA, Sen S, Sweeney HL, Discher ED. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126:677–89.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Shanghai Stomatological Hospital Science and Technology Talents Project (SSH-2022-KJCX-B01); National Key Research and Development Program of China (2021YFA1201302/2021YFA1201300); the National Natural Science Foundation of China (NO. 52173029; NO. 51733002; NO. 51803022); Guoyin Chen thanks for the support from the fellowship of China National Postdoctoral Program for Innovative Talents under Grant BX20220063, and Graduate Student Innovation Fund of Donghua University (CUSF-DH-D-2020038).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuehua Liu, Kai Hou or Jie Pan.

Ethics declarations

Conflict of Interest

The authors declare`that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2951.6 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Xu, S., Zhou, Q. et al. Temperature-Gated Light-Guiding Hydrogel Fiber for Thermoregulation During Optogenetic Neuromodulation. Adv. Fiber Mater. 5, 968–978 (2023). https://doi.org/10.1007/s42765-023-00257-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-023-00257-9

Keywords

Navigation