Skip to main content
Log in

Green Fabrication of Underwater Superoleophobic Biopolymeric Nanofibrous Membranes for Effective Oil–Water Separation

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Currently, most of the materials for oil–water separation membranes are limited to fluorine-based polymers with low surface energy. However, it is not biodegradable and requires large amounts of organic and toxic solvents in the membrane manufacturing process. Therefore, interest in the development of a new eco-friendly oil–water separation membrane that does not cause secondary pollution and exhibits selective wettability characteristics in water or oil is increasing. The biopolymeric nanofibrous membranes inspired by fish skin can provide specific underwater oleophobicity, which is effective for excellent oil–water separation efficiency and prevention of secondary contamination. Fish gelatin, which is highly soluble in water and has a low gelation temperature, can be electrospun in an aqueous solution and has the same polar functional groups as the hydrophilic mucilage of fish skin. In addition, the micro/nanostructure of fish skin, which induces superoleophobicity in water, introduces a bead-on-string structure using the Rayleigh instability of electrospinning. The solubility of fish gelatin in water was removed using an eco-friendly crosslinking method using reducing sugars. Fish skin-mimicking materials successfully separated suspended oil and emulsified oil, with a maximum flux of 2086 Lm−2 h−1 and a separation efficiency of more than 99%. The proposed biopolymeric nanofibrous membranes use fish gelatin, which can be extracted from fish waste and has excellent biodegradability with excellent oil–water separation performance. In addition, polymer material processing, including membrane manufacturing and crosslinking, can be realized through eco-friendly processes. Therefore, fish skin-inspired biopolymeric membrane is expected to be a promising candidate for a sustainable and effective oil–water separation membrane in the future.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Liu Y, Qian X, Wang L, Bai H, Cui Y. Electrospun polyimide nanofibrous membranes for absorption of oil spills. J Ind Text 2019;50:584.

    Article  Google Scholar 

  2. Su Y, Zhao Q, Liu J, Zhao J, Li Y, Jiang Z. Improved oil/water emulsion separation performance of PVC/CPVC blend ultrafiltration membranes by fluorination treatment. Desalination Water Treat 2015;55:304.

    Article  CAS  Google Scholar 

  3. Shu D, Xi P, Cheng B, Wang Y, Yang L, Wang X, Yan X. One-step electrospinning cellulose nanofibers with superhydrophilicity and superoleophobicity underwater for high-efficiency oil-water separation. Int J Biol Macromol 2020;162:1536.

    Article  CAS  Google Scholar 

  4. Machín-Ramírez C, Okoh A, Morales D, Mayolo-Deloisa K, Quintero R, Trejo-Hernández M. Slurry-phase biodegradation of weathered oily sludge waste. Chemosphere 2008;70:737.

    Article  Google Scholar 

  5. Otitoju T, Ahmad A, Ooi B. Polyvinylidene fluoride (PVDF) membrane for oil rejection from oily wastewater: a performance review. J Water Process Eng 2016;14:41.

    Article  Google Scholar 

  6. Tanudjaja HJ, Hejase CA, Tarabara VV, Fane AG, Chew JW. Membrane-based separation for oily wastewater: a practical perspective. Water Res 2019;156:347.

    Article  CAS  Google Scholar 

  7. Yu L, Han M, He F. A review of treating oily wastewater. Arab J Chem 2017;10:S1913.

    Article  CAS  Google Scholar 

  8. Adetunji AI, Olaniran AO. Treatment of industrial oily wastewater by advanced technologies: a review. Appl Water Sci 2021;11:1.

    Article  Google Scholar 

  9. Gupta RK, Dunderdale GJ, England MW, Hozumi A. Oil/water separation techniques: a review of recent progresses and future directions. J Mater Chem 2017;5:16025.

    Article  CAS  Google Scholar 

  10. Zhu Y, Wang D, Jiang L, Jin J. Recent progress in developing advanced membranes for emulsified oil/water separation. NPG Asia Mater 2014;6:e101.

    Article  CAS  Google Scholar 

  11. Padaki M, Murali RS, Abdullah MS, Misdan N, Moslehyani A, Kassim M, Hilal N, Ismail A. Membrane technology enhancement in oil–water separation. A review. Desalination 2015;357:197.

    Article  CAS  Google Scholar 

  12. Tang F, Wang D, Zhou C, Zeng X, Du J, Chen L, Zhou W, Lu Z, Tan L, Dong L. Natural polyphenol chemistry inspired organic-inorganic composite coating decorated PVDF membrane for oil-in-water emulsions separation. Mater Res Bull 2020;132:110995.

    Article  CAS  Google Scholar 

  13. Gao SJ, Shi Z, Zhang WB, Zhang F, Jin J. Photoinduced superwetting single-walled carbon nanotube/TiO2 ultrathin network films for ultrafast separation of oil-in-water emulsions. ACS Nano 2014;8:6344.

    Article  CAS  Google Scholar 

  14. Hu L, Gao S, Ding X, Wang D, Jiang J, Jin J, Jiang L. Photothermal-responsive single-walled carbon nanotube-based ultrathin membranes for on/off switchable separation of oil-in-water nanoemulsions. ACS Nano 2015;9:4835.

    Article  CAS  Google Scholar 

  15. Si Y, Fu Q, Wang X, Zhu J, Yu J, Sun G, Ding B. Superelastic and superhydrophobic nanofiber-assembled cellular aerogels for effective separation of oil/water emulsions. ACS Nano 2015;9:3791.

    Article  CAS  Google Scholar 

  16. Ge J, Zong D, Jin Q, Yu J, Ding B. Biomimetic and superwettable nanofibrous skins for highly efficient separation of oil-in-water emulsions. Adv Funct Mater 2018;28:1705051.

    Article  Google Scholar 

  17. Xue Z, Cao Y, Liu N, Feng L, Jiang L. Special wettable materials for oil/water separation. J Mater Chem A 2014;2:2445.

    Article  CAS  Google Scholar 

  18. Chen C, Weng D, Mahmood A, Chen S, Wang J. Separation mechanism and construction of surfaces with special wettability for oil/water separation. ACS Appl Mater Interfaces 2019;11:11006.

    Article  CAS  Google Scholar 

  19. Waghmare PR, Gunda NSK, Mitra SK. Under-water superoleophobicity of fish scales. Sci Rep 2014;4:1.

    Article  CAS  Google Scholar 

  20. Yong J, Chen F, Yang Q, Huo J, Hou X. Superoleophobic surfaces. Chem Soc Rev 2017;46:4168.

    Article  CAS  Google Scholar 

  21. Jiang T, Guo Z, Liu W. Biomimetic superoleophobic surfaces: focusing on their fabrication and applications. J Mater Chem A 2015;3:1811.

    Article  CAS  Google Scholar 

  22. Ma W, Xu H, Takahara A. Substrate-independent underwater superoleophobic surfaces inspired by fish-skin and mussel-adhesives. Adv Mater Interfaces 2014;1:1300092.

    Article  Google Scholar 

  23. Huang S, Ras RH, Tian X. Antifouling membranes for oily wastewater treatment: Interplay between wetting and membrane fouling. Curr Opin Colloid Interface Sci 2018;36:90.

    Article  CAS  Google Scholar 

  24. Pendergast MM, Hoek EM. A review of water treatment membrane nanotechnologies. Energy Environ Sci 2011;4:1946.

    Article  CAS  Google Scholar 

  25. Wang Y, Gong X. Special oleophobic and hydrophilic surfaces: approaches, mechanisms, and applications. J Mater Chem A 2017;5:3759.

    Article  CAS  Google Scholar 

  26. Du C, Wang Z, Liu G, Wang W, Yu D. One-step electrospinning PVDF/PVP-TiO2 hydrophilic nanofiber membrane with strong oil-water separation and anti-fouling property. Colloids Surf A Physicochem Eng 2021;624:126790.

    Article  CAS  Google Scholar 

  27. Jia L, Huang X, Tao Q. Enhanced hydrophilic and antibacterial efficiencies by the synergetic effect TiO2 nanofiber and graphene oxide in cellulose acetate nanofibers. Int J Biol Macromol 2019;132:1039.

    Article  CAS  Google Scholar 

  28. Jang W, Yun J, Park Y, Park IK, Byun H, Lee CH. Polyacrylonitrile nanofiber membrane modified with Ag/GO composite for water purification system. Polymers 2020;12:2441.

    Article  CAS  Google Scholar 

  29. Fang Q, Zhu M, Yu S, Sui G, Yang X. Studies on soy protein isolate/polyvinyl alcohol hybrid nanofiber membranes as multi-functional eco-friendly filtration materials. Mater Sci Eng B 2016;214:1.

    Article  CAS  Google Scholar 

  30. Kim H-J, Park SJ, Park CS, Le T-H, Lee SH, Ha TH, Kim H-i, Kim J, Lee C-S, Yoon H. Surface-modified polymer nanofiber membrane for high-efficiency microdust capturing. J Chem Eng 2018;339:204.

    Article  CAS  Google Scholar 

  31. Kim Y-J, Uyama H. Biocompatible hydrogel formation of gelatin from cold water fish via enzymatic networking. Polym J 2007;39:1040.

    Article  CAS  Google Scholar 

  32. Lv L-C, Huang Q-Y, Ding W, Xiao X-H, Zhang H-Y, Xiong L-X. Fish gelatin: the novel potential applications. J Funct Foods 2019;63:103581.

    Article  CAS  Google Scholar 

  33. Zhang T, Sun R, Ding M, Li L, Tao N, Wang X, Zhong J. Commercial cold-water fish skin gelatin and bovine bone gelatin: Structural, functional, and emulsion stability differences. Lwt 2020;125:109207.

    Article  CAS  Google Scholar 

  34. Ghorani B, Emadzadeh B, Rezaeinia H, Russell SJ. Improvements in gelatin cold water solubility after electrospinning and associated physicochemical, functional and rheological properties. Food Hydrocoll 2020;104:105740.

    Article  CAS  Google Scholar 

  35. Xue J, Xie J, Liu W, Xia Y. Electrospun nanofibers: new concepts, materials, and applications. Acc Chem Res 2017;50:1976.

    Article  CAS  Google Scholar 

  36. Zhang S, Liu H, Yu J, Li B, Ding B. Multi-functional flexible 2D carbon nanostructured networks. Nat Commun 2020;11:1.

    Google Scholar 

  37. Zhang J, Song J, Liu L, Zhang P, Si Y, Zhang S, Yu J, Ding B. Electroconductive nanofibrous membranes with nanosheet-based microsphere-threaded heterostructures enabling oily wastewater remediation. J Mater Chem A 2021;9:15310.

    Article  CAS  Google Scholar 

  38. Lee MW, An S, Latthe SS, Lee C, Hong S, Yoon SS. Electrospun polystyrene nanofiber membrane with superhydrophobicity and superoleophilicity for selective separation of water and low viscous oil. ACS Appl Mater Interfaces 2013;5:10597.

    Article  CAS  Google Scholar 

  39. Kwak HW, Park J, Yun H, Jeon K, Kang D-W. Effect of crosslinkable sugar molecules on the physico-chemical and antioxidant properties of fish gelatin nanofibers. Food Hydrocoll 2021;111:106259.

    Article  CAS  Google Scholar 

  40. Stevenson M, Long J, Seyfoddin A, Guerrero P, de la Caba K, Etxabide A. Characterization of ribose-induced crosslinking extension in gelatin films. Food Hydrocoll 2020;99:105324.

    Article  CAS  Google Scholar 

  41. Ehrmann A. Non-toxic crosslinking of electrospun gelatin nanofibers for tissue engineering and biomedicine—a review. Polymers 2021;13:1973.

    Article  CAS  Google Scholar 

  42. Kwak HW, Kim JE, Lee KH. Green fabrication of antibacterial gelatin fiber for biomedical application. React Funct Polym 2019;136:86.

    Article  CAS  Google Scholar 

  43. Chen H, Wu D, Ma W, Wu C, Tian Y, Wang S, Du M. Strong fish gelatin hydrogels enhanced by carrageenan and potassium sulfate. Food Hydrocoll 2021;119:106841.

    Article  CAS  Google Scholar 

  44. Oh S, Park J, Nam J, Hyun Y, Jin H-J, Kwak HW. Antioxidant and UV-blocking glucose-crosslinked sericin films with enhanced structural integrity. React Funct Polym 2021;165:104942.

    Article  CAS  Google Scholar 

  45. Correia DM, Padrão J, Rodrigues L, Dourado F, Lanceros-Méndez S, Sencadas V. Thermal and hydrolytic degradation of electrospun fish gelatin membranes. Polym Test 2013;32:995.

    Article  CAS  Google Scholar 

  46. Chuaynukul K, Nagarajan M, Prodpran T, Benjakul S, Songtipya P, Songtipya L. Comparative characterization of bovine and fish gelatin films fabricated by compression molding and solution casting methods. J Polym Environ 2018;26:1239.

    Article  CAS  Google Scholar 

  47. Kchaou H, Benbettaïeb N, Jridi M, Abdelhedi O, Karbowiak T, Brachais C-H, Léonard M-L, Debeaufort F, Nasri M. Enhancement of structural, functional and antioxidant properties of fish gelatin films using Maillard reactions. Food Hydrocoll 2018;83:326.

    Article  CAS  Google Scholar 

  48. Zhang C, Mcadams DA, Grunlan JC. Nano/micro-manufacturing of bioinspired materials: a review of methods to mimic natural structures. Adv Mater 2016;28:6292.

    Article  CAS  Google Scholar 

  49. Zhang J, Ge J, Si Y, Zhang F, Yu J, Liu L, Ding B. Taro leaf-inspired and superwettable nanonet-covered nanofibrous membranes for high-efficiency oil purification. Nanoscale Horiz 2019;4:1174.

    Article  CAS  Google Scholar 

  50. Eang C, Opaprakasit P. Electrospun nanofibers with superhydrophobicity derived from degradable polylactide for oil/water separation applications. J Polym Environ 2020;28:1484.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was also supported by the Technology Innovation Program (20018540) funded by the Ministry of Trade, Industry and Energy (MOTIE, Korea). This research was also supported by the Basic Science Research Program of the National Research Foundation of Korea (NRF), funded by the Ministry of Education (NRF-2021R1A4A2001403).

Author information

Authors and Affiliations

Authors

Contributions

SO: investigation; methodology; writing—review and editing. JB: methodology, writing—review and editing. H-JJ: supervision, conceptualization, resources, writing—review and editing. HWK: supervision, conceptualization, writing—review and editing.

Corresponding authors

Correspondence to Hyoung-Joon Jin or Hyo Won Kwak.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations,

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2211 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, S., Bang, J., Jin, HJ. et al. Green Fabrication of Underwater Superoleophobic Biopolymeric Nanofibrous Membranes for Effective Oil–Water Separation. Adv. Fiber Mater. 5, 603–616 (2023). https://doi.org/10.1007/s42765-022-00251-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-022-00251-7

Keywords

Navigation