Skip to main content
Log in

Robust, Breathable and Flexible Smart Textiles as Multifunctional Sensor and Heater for Personal Health Management

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Smart textiles with high sensitivity and rapid response for various external stimuli have gained tremendous attentions in human healthcare monitoring, personal heat management, and wearable electronics. However, the current smart textiles only acquire desired signal passively, regularly lacking subsequent on-demand therapy actively. Herein, a robust, breathable, and flexible smart textiles as multi-function sensor and wearable heater for human health monitoring and gentle thermotherapy in real time is constructed. The composite fiber as strain sensor (CFY@PU) was fabricated via warping carbon fiber yarns (CFY) onto polyurethane fibers (PU), which endowed composite fiber with high conductivity, excellent sensitivity (GF = 76.2), and fantastic dynamic durability (7500 cycles) in strain sensing. In addition, CFY@PU can detect various degrees of human movements such as elbow bending, swallowing and pulse, which can provide effective information for disease diagnosis. More surprisingly, weaving CFY@PU into a fabric can assemble highly sensitive pressure sensor for remote communication and information encryption. Warping CFY onto Kevlar would obtain temperature-sensitive composite fiber (CFY@Kevlar) as temperature sensor and wearable heater for on-demand thermotherapy, which provided unique opportunities in designing smart textiles with ultrahigh sensitivity, rapid response, and great dynamic durability.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shi X, Zuo Y, Zhai P, Shen J, Yang Y, Gao Z, Liao M, Wu J, Wang J, Xu X, Tong Q, Zhang B, Wang B, Sun X, Zhang L, Pei Q, Jin D, Chen P, Peng H. Large-area display textiles integrated with functional systems. Nature 2021;591:240.

    Article  CAS  Google Scholar 

  2. Zeng W, Shu L, Li Q, Chen S, Wang F, Tao X-M. Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv Mater 2014;26:5310.

    Article  CAS  Google Scholar 

  3. Heo JS, Eom J, Kim Y-H, Park SK. Recent progress of textile-based wearable electronics: a comprehensive review of materials, devices, and applications. Small 2018;14:1703034.

    Article  Google Scholar 

  4. Ye C, Ren J, Wang Y, Zhang W, Qian C, Han J, Zhang C, Jin K, Buehler MJ, Kaplan DL, Ling S. Design and fabrication of silk templated electronic yarns and applications in multifunctional textiles. Matter 2019;1:1411.

    Article  Google Scholar 

  5. Li Q, Yin R, Zhang D, Liu H, Chen X, Zheng Y, Guo Z, Liu C, Shen C. Flexible conductive MXene/cellulose nanocrystal coated nonwoven fabrics for tunable wearable strain/pressure sensors. J Mater Chem A 2020;8:21131.

    Article  CAS  Google Scholar 

  6. Wang L, Wang L, Zhang Y, Pan J, Li S, Sun X, Zhang B, Peng H. Weaving sensing fibers into electrochemical fabric for real-time health monitoring. Adv Funct Mater 2018;28:1804456.

    Article  Google Scholar 

  7. Wu R, Ma L, Hou C, Meng Z, Guo W, Yu W, Yu R, Hu F, Liu XY. Silk composite electronic textile sensor for high space precision 2D combo temperature–pressure sensing. Small 2019;15:1901558.

    Article  Google Scholar 

  8. Zhang L, He J, Liao Y, Zeng X, Qiu N, Liang Y, Xiao P, Chen T. A self-protective, reproducible textile sensor with high performance towards human-machine interactions. J Mater Chem A 2019;7:26631.

    Article  CAS  Google Scholar 

  9. Cao R, Pu X, Du X, Yang W, Wang J, Guo H, Zhao S, Yuan Z, Zhang C, Li C, Wang ZL. Screen-printed washable electronic textiles as self-powered touch/gesture tribo-sensors for intelligent human–machine interaction. ACS Nano 2018;12:5190.

    Article  CAS  Google Scholar 

  10. Gong M, Wan P, Ma D, Zhong M, Liao M, Ye J, Shi R, Zhang L. Flexible breathable nanomesh electronic devices for on-demand therapy. Adv Funct Mater 2019;29:1902127.

    Article  Google Scholar 

  11. Libanori A, Chen G, Zhao X, Zhou Y, Chen J. Smart textiles for personalized healthcare. Nat Electron 2022;5:142.

    Article  CAS  Google Scholar 

  12. Xu J, Wang S, Wang Ging-Ji N, Zhu C, Luo S, Jin L, Gu X, Chen S, Feig Vivian R, To John WF, Rondeau-Gagné S, Park J, Schroeder Bob C, Lu C, Oh Jin Y, Wang Y, Kim Y-H, Yan H, Sinclair R, Zhou D, Xue G, Murmann B, Linder C, Cai W, Tok Jeffery BH, Chung Jong W, Bao Z. Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science 2017;355:59.

    Article  CAS  Google Scholar 

  13. Ouyang Z, Xu D, Yu H-Y, Li S, Song Y, Tam KC. Novel ultrasonic-coating technology to design robust, highly sensitive and wearable textile sensors with conductive nanocelluloses. Chem Eng J 2022;428:131289.

    Article  CAS  Google Scholar 

  14. Du X, Tian M, Sun G, Li Z, Qi X, Zhao H, Zhu S, Qu L. Self-powered and self-sensing energy textile system for flexible wearable applications. ACS Appl Mater Interfaces 2020;12:55876.

    Article  CAS  Google Scholar 

  15. He H, Liu J, Wang Y, Zhao Y, Qin Y, Zhu Z, Yu Z, Wang J. An ultralight self-powered fire alarm e-textile based on conductive aerogel fiber with repeatable temperature monitoring performance used in firefighting clothing. ACS Nano 2022;16:2953.

    Article  CAS  Google Scholar 

  16. Wu S, Cui Z, Baker GL, Mahendran S, Xie Z, Zhu Y. A biaxially stretchable and self-sensing textile heater using silver nanowire composite. ACS Appl Mater Interfaces 2021;13:59085.

    Article  CAS  Google Scholar 

  17. Ouyang Z, Cui S, Yu H, Xu D, Wang C, Tang D, Tam KC. Versatile sensing devices for self-driven designated therapy based on robust breathable composite films. Nano Res 2022;15:1027.

    Article  CAS  Google Scholar 

  18. Xu L, Zhai H, Chen X, Liu Y, Wang M, Liu Z, Umar M, Ji C, Chen Z, Jin L, Liu Z, Song Q, Yue P, Li Y, Ye TT. Coolmax/graphene-oxide functionalized textile humidity sensor with ultrafast response for human activities monitoring. Chem Eng J 2021;412:128639.

    Article  CAS  Google Scholar 

  19. Jalili R, Razal JM, Innis PC, Wallace GG. One-step wet-spinning process of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) fibers and the origin of higher electrical conductivity. Adv Funct Mater 2011;21:3363.

    Article  CAS  Google Scholar 

  20. Wang C, Xia K, Zhang M, Jian M, Zhang Y. An all-silk-derived dual-mode e-skin for simultaneous temperature–pressure detection. ACS Appl Mater Interfaces 2017;9:39484.

    Article  CAS  Google Scholar 

  21. Tang Z, Jia S, Wang F, Bian C, Chen Y, Wang Y, Li B. Highly stretchable core–sheath fibers via wet-spinning for wearable strain sensors. ACS Appl Mater Interfaces 2018;10:6624.

    Article  CAS  Google Scholar 

  22. Wu R, Ma L, Liu XY. From mesoscopic functionalization of silk fibroin to smart fiber devices for textile electronics and photonics. Adv Sci 2022;9:2103981.

    Article  CAS  Google Scholar 

  23. Zhang Y, Aniruddha P, Hou C, Lu D, Qiu W, Kong L, Wu R, Ma L, Yu R, Yu W, Liu XY. Reconstructed silk fibroin mediated smart wristband for physiological signal detection. Chem Eng J 2022;428:132362.

    Article  CAS  Google Scholar 

  24. Chen L, Chen C, Jin L, Guo H, Wang AC, Ning F, Xu Q, Du Z, Wang F, Wang ZL. Stretchable negative Poisson’s ratio yarn for triboelectric nanogenerator for environmental energy harvesting and self-powered sensor. Energy Environ Sci 2021;14:955.

    Article  CAS  Google Scholar 

  25. Cheng B, Wu P. Scalable fabrication of Kevlar/Ti3C2Tx MXene intelligent wearable fabrics with multiple sensory capabilities. ACS Nano 2021;15:8676.

    Article  CAS  Google Scholar 

  26. Ouyang Z, Wang C, Xu D, Yu H-Y, Zhou Y, Mu M, Ge D, Miao Z, Tam KC. Lightweight nanofibrous crosslinked composite aerogels with controllable shapes and superelasticity for pressure sensors. Macromol Mater Eng 2022;307:2100834.

    Article  CAS  Google Scholar 

  27. Long S, Feng Y, He F, Zhao J, Bai T, Lin H, Cai W, Mao C, Chen Y, Gan L, Liu J, Ye M, Zeng X, Long M. Biomass-derived, multifunctional and wave-layered carbon aerogels toward wearable pressure sensors, supercapacitors and triboelectric nanogenerators. Nano Energy 2021;85:105973.

    Article  CAS  Google Scholar 

  28. Bae GY, Pak SW, Kim D, Lee G, Kim DH, Chung Y, Cho K. Linearly and highly pressure-sensitive electronic skin based on a bioinspired hierarchical structural array. Adv Mater 2016;28:5300.

    Article  CAS  Google Scholar 

  29. Gong S, Schwalb W, Wang Y, Chen Y, Tang Y, Si J, Shirinzadeh B, Cheng W. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat Commun 2014;5:3132.

    Article  Google Scholar 

  30. Tian H, Shu Y, Wang X-F, Mohammad MA, Bie Z, Xie Q-Y, Li C, Mi W-T, Yang Y, Ren T-L. A graphene-based resistive pressure sensor with record-high sensitivity in a wide pressure range. Sci Rep 2015;5:8603.

    Article  CAS  Google Scholar 

  31. Xiong Y, Shen Y, Tian L, Hu Y, Zhu P, Sun R, Wong C-P. A flexible, ultra-highly sensitive and stable capacitive pressure sensor with convex microarrays for motion and health monitoring. Nano Energy 2020;70:104436.

    Article  CAS  Google Scholar 

  32. Lee S, Franklin S, Hassani FA, Yokota T, Nayeem MOG, Wang Y, Leib R, Cheng G, Franklin DW, Someya T. Nanomesh pressure sensor for monitoring finger manipulation without sensory interference. Science 2020;370:966.

    Article  CAS  Google Scholar 

  33. Chandrasekhar A, Vivekananthan V, Khandelwal G, Kim SJ. A fully packed water-proof, humidity resistant triboelectric nanogenerator for transmitting morse code. Nano Energy 2019;60:850.

    Article  CAS  Google Scholar 

  34. Grosse KL, Bae M-H, Lian F, Pop E, King WP. Nanoscale joule heating, peltier cooling and current crowding at graphene–metal contacts. Nat. Nanotechnol 2011;6:287.

    Article  CAS  Google Scholar 

  35. Song T-B, Chen Y, Chung C-H, Yang Y, Bob B, Duan H-S, Li G, Tu K-N, Huang Y, Yang Y. Nanoscale joule heating and electromigration enhanced ripening of silver nanowire contacts. ACS Nano 2014;8:2804.

    Article  CAS  Google Scholar 

  36. Boroumand FA, Hammiche A, Hill G, Lidzey DGJAM. Characterizing joule heating in polymer light-emitting diodes using a scanning thermal microscope. Adv. Mater 2004;16:252.

    Article  CAS  Google Scholar 

  37. Xuan XJE. Joule heating in electrokinetic flow. Electrophoresis 2008;29:33.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Outstanding Youth Project of Zhejiang Provincial Natural Science Foundation (LR22E030002), the Key Research and Development Program of Zhejiang Province (2022C01049), Zhejiang Provincial Natural Science Key Foundation of China (LZ20E030003), National Natural Science Foundation of China (52273095).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hou-Yong Yu.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 10497 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, D., Ouyang, Z., Dong, Y. et al. Robust, Breathable and Flexible Smart Textiles as Multifunctional Sensor and Heater for Personal Health Management. Adv. Fiber Mater. 5, 282–295 (2023). https://doi.org/10.1007/s42765-022-00221-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-022-00221-z

Keywords

Navigation