Skip to main content

Advertisement

Log in

Wearable Fiber-Based Supercapacitors Enabled by Additive-Free Aqueous MXene Inks for Self-Powering Healthcare Sensors

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Wearable fiber-based electronics have found diverse applications including energy storage, healthcare or thermal management, etc. In particular, additive-free aqueous inks play significant roles in fabrication of wearable fiber-based devices, owning to their nontoxic nature and ease of manufacturing. Herein, wearable carbon fiber-based asymmetric supercapacitors (WASSC) are developed based on additive-free aqueous MXene inks, for self-powering healthcare sensors. The sediments of MXene without further modification are used as inks. Furthermore, combined with additive-free aqueous MXene/polyaniline (MP) inks, WASSC, with a wide voltage window and high capacitance is developed for practical energy supply. Impressively, WASSC has been successfully utilized to power wearable pressure sensors that could monitor motions and pulse signals. This wearable self-powered monitoring system on can accurately monitor the human motions, pronunciation, swallow or wrist pulse, without using the rigid batteries. This advantage realizes a great potential in simple and cost effective monitoring of human health and activities. Besides, self-powered system enables waste recycling of MXene and provides an effective approach for designing wearable and fiber-based self-powered sensors.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ghidiu M, Lukatskaya MR, Zhao MQ, Gogotsi Y, Barsoum MW. Conductive two-dimensional titanium carbide “clay” with high volumetric capacitance. Nature 2014;516:78.

    Article  CAS  Google Scholar 

  2. Wu GH, Li TT, Wang ZL, Li MZ, Wang BW, Dong AG. Molecular ligand-mediated assembly of multicomponent nanosheet superlattices for compact capacitive energy storage. Angew Chem Int Ed 2020;132:20809.

    Article  Google Scholar 

  3. Sreenilayam SP, Ul Ahad I, Nicolosi V, Brabazon D. MXene materials based printed flexible devices for healthcare, biomedical and energy storage applications. Mater Today 2021;43:99.

    Article  CAS  Google Scholar 

  4. Anasori B, Lukatskaya MR, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater 2017;2:16098.

    Article  CAS  Google Scholar 

  5. Shahzad F, Alhabeb M, Hatter CB, Anasori B, Man Hong S, Koo CM, Gogotsi Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 2016;353:1137.

    Article  CAS  Google Scholar 

  6. Li XB, He LZ, Li YF, Chao MY, Li MK, Wan PB, Zhang LQ. Healable, degradable, and conductive mxene nanocomposite hydrogel for multifunctional epidermal sensors. ACS Nano 2021;15:7765–73.

    Article  CAS  Google Scholar 

  7. Liu H, Chen XY, Zheng YJ, Zhang DB, Zhao Y, Wang CF, Pan CF, Liu CT, Shen CY. Lightweight, superelastic, and hydrophobic polyimide nanofiber /MXene composite aerogel for wearable piezoresistive sensor and oil/water separation applications. Adv Funct Mater 2021;31:2008006.

    Article  CAS  Google Scholar 

  8. Zhao Q, Zhang C, Hu RM, Du ZG, Gu JN, Cui YLS, Chen X, Xu WJ, Cheng ZJ, Li SM, Li B, Liu YF, Chen WH, Liu CT, Shang JX, Song L, Yang SB. Selective etching quaternary max phase toward single atom copper immobilized MXene (Ti3C2Clx) for efficient CO2 electroreduction to methanol. ACS Nano 2021;15:4927–36.

    Article  CAS  Google Scholar 

  9. Wu XH, Wang JH, Wang ZY, Sun F, Liu YZ, Wu KF, Meng XY, Qiu JS. Boosting the electrocatalysis of MXenes by plasmon-induced thermalization and hot-electron injection. Angew Chem Int Ed 2021;60:9416.

    Article  CAS  Google Scholar 

  10. Li LL, Yu DS, Li P, Huang HJ, Xie DY, Lin C-C, Hu F, Chen H-Y, Peng SJ. Interfacial electronic coupling of ultrathin transition-metal hydroxide nanosheets with layered MXenes as a new prototype for platinum-like hydrogen evolution. Energy Environ Sci 2021;14:6419.

    Article  CAS  Google Scholar 

  11. Rasool K, Helal M, Ali A, Ren CE, Gogotsi Y, Mahmoud KA. Antibacterial activity of Ti(3)C(2)Tx MXene. ACS Nano 2016;10:3674–84.

    Article  CAS  Google Scholar 

  12. Naguib M, Kurtoglu M, Presser V, Lu J, Niu JJ, Heon M, Hultman L, Gogotsi Y, Barsoum MW. Two-dimensional nanocrystals produced by exfoliation of Ti3 AlC2. Adv Mater 2011;23:4248.

    Article  CAS  Google Scholar 

  13. Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y, Barsoum MW. Two-dimensional transition metal carbides. ACS Nano 2012;6:1322–31.

    Article  CAS  Google Scholar 

  14. Cao WT, Ma C, Mao DS, Zhang J, Ma MG, Chen F. MXene-Reinforced cellulose nanofibril inks for 3D-printed smart fibres and textiles. Adv Funct Mater 2019;29:1905898.

    Article  CAS  Google Scholar 

  15. Zhang CJ, Anasori B, Seral-Ascaso A, Park SH, McEvoy N, Shmeliov A, Duesberg GS, Coleman JN, Gogotsi Y, Nicolosi V. Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance. Adv Mater 2017;29:1702678.

    Article  Google Scholar 

  16. Wang YM, Wang X, Li XL, Bai Y, Xiao HH, Liu Y, Liu R, Yuan GH. Engineering 3D ion transport channels for flexible MXene films with superior capacitive performance. Adv Funct Mater 2019;29:1900326.

    Article  Google Scholar 

  17. Zhang CJ, McKeon L, Kremer MP, Park SH, Ronan O, Seral-Ascaso A, Barwich S, Coileain CO, McEvoy N, Nerl HC, Anasori B, Coleman JN, Gogotsi Y, Nicolosi V. Additive-free MXene inks and direct printing of micro-supercapacitors. Nat Commun 2019;10:1795.

    Article  Google Scholar 

  18. Couly C, Alhabeb M, Van Aken KL, Kurra N, Gomes L, Navarro-Suárez AM, Anasori B, Alshareef HN, Gogotsi Y. Asymmetric flexible MXene-reduced graphene oxide micro-supercapacitor. Adv Electron Mater 2017;4:1700339.

    Article  Google Scholar 

  19. Lipatov A, Goad A, Loes MJ, Vorobeva NS, Abourahma J, Gogotsi Y, Sinitskii A. High electrical conductivity and breakdown current density of individual monolayer Ti3C2T MXene flakes. Matter 2021;4:1413.

    Article  CAS  Google Scholar 

  20. Zheng W, Halim J, Sun ZM, Rosen J, Barsoum MW. MXene—manganese oxides aqueous asymmetric supercapacitors with high mass loadings, high cell voltages and slow self-discharge. Energy Storage Mater 2021;38:438–46.

    Article  Google Scholar 

  21. Liang LY, Li QM, Yan X, Feng YZ, Wang YM, Zhang HB, Zhou XP, Liu CT, Shen CY, Xie XL. Multifunctional magnetic Ti3C2Tx MXene/Graphene Aerogel with Superior Electromagnetic Wave Absorption Performance. ACS Nano 2021;15:6622–32.

    Article  CAS  Google Scholar 

  22. Abdolhosseinzadeh S, Schneider R, Verma A, Heier J, Nuesch F, Zhang CJ. Turning trash into treasure: additive free mxene sediment inks for screen-printed micro-supercapacitors. Adv Mater 2020;32:e2000716.

    Article  Google Scholar 

  23. Ma C, Ma MG, Si C, Ji XX, Wan P. Flexible MXene-Based Composites for Wearable Devices. Adv Funct Mater 2021;31:2009524.

    Article  CAS  Google Scholar 

  24. Kim J, Jeerapan I, Sempionatto JR, Barfidokht A, Mishra RK, Campbell AS, Hubble LJ, Wang J. Wearable bioelectronics: enzyme-based body-worn electronic devices. Acc Chem Res 2018;51:2820.

    Article  CAS  Google Scholar 

  25. Zhao WW, Jiang MY, Wang WK, Liu SJ, Huang W, Zhao Q. Flexible transparent supercapacitors: materials and devices. Adv Funct Mater 2020;31:2009136.

    Article  Google Scholar 

  26. Park H, Kim JW, Hong SY, Lee G, Lee H, Song C, Keum K, Jeong YR, Jin SW, Kim DS, Ha JS. Dynamically Stretchable Supercapacitor for Powering an Integrated Biosensor in an All-in-One Textile System. ACS Nano 2019;13:10469–80.

    Article  CAS  Google Scholar 

  27. Vaghasiya JV, Mayorga-Martinez CC, Vyskočil J, Sofer Z, Pumera M. Integrated biomonitoring sensing with wearable asymmetric supercapacitors based on Ti3C2 MXene and 1T-Phase WS2 nanosheets. Adv Funct Mater 2020;30:2003673.

    Article  CAS  Google Scholar 

  28. Li W, Xu X, Liu C, Tekell MC, Ning J, Guo J, Zhang J, Fan D. Ultralight and binder-free all-solid-state flexible supercapacitors for powering wearable strain sensors. Adv Funct Mater 2017;27:1702738.

    Article  Google Scholar 

  29. Kim DS, Jeong JM, Park HJ, Kim YK, Lee KG, Choi BG. Highly concentrated, conductive, defect-free graphene ink for screen-printed sensor application. Nano-micro Lett 2021;13:87.

    Article  CAS  Google Scholar 

  30. Hu G, Kang J, Ng LWT, Zhu X, Howe RCT, Jones CG, Hersam MC, Hasan T. Functional inks and printing of two-dimensional materials. Chem Soc Rev 2018;47:3265.

    Article  CAS  Google Scholar 

  31. Yu LH, Fan ZD, Shao YL, Tian ZN, Sun JY, Liu ZF. Versatile N-doped MXene Ink for printed electrochemical energy storage application. Adv Energy Mater 2019;9:1901839.

    Article  Google Scholar 

  32. Wu C-W, Unnikrishnan B, Chen IWP, Harroun SG, Chang H-T, Huang C-C. Excellent oxidation resistive MXene aqueous ink for micro-supercapacitor application. Energy Storage Mater 2020;25:563.

    Article  Google Scholar 

  33. Li HP, Li XR, Liang JJ, Chen YS. Hydrous RuO2-Decorated MXene coordinating with silver nanowire inks enabling fully printed micro-supercapacitors with extraordinary volumetric performance. Adv Energy Mater 2019;9:1803987.

    Article  Google Scholar 

  34. Lian XT, Xu N, Ma YC, Hu F, Wei HX, Chen H-Y, Wu YZ, Li LL, Li DS, Peng SJ. In-situ formation of Co1−xS hollow polyhedrons anchored on multichannel carbon nanofibers as self-supporting anode for lithium/sodium-ion batteries. Chem Eng J 2021;421:127755.

    Article  CAS  Google Scholar 

  35. Peng SJ, Jin GR, Li LL, Li K, Srinivasan M, Ramakrishna S, Chen J. Multi-functional electrospun nanofibres for advances in tissue regeneration, energy conversion & storage, and water treatment. Chem Soc Rev 2016;45:1225–41.

    Article  CAS  Google Scholar 

  36. Huang AM, Ma YC, Peng J, Li LL, Chou S-l, Ramakrishna S, Peng SJ. Tailoring the structure of silicon-based materials for lithium-ion batteries via electrospinning technology. eScience. 2021, 1: 141–162.

  37. Hao Y, Hu F, Chen Y, Wang YH, Xue JJ, Yang SY, Peng SJ. Recent progress of electrospun nanofibers for Zinc-Air batteries. Adv Fiber Mater 2022;4:185–202.

    Article  CAS  Google Scholar 

  38. Li H, Chen R, Ali M, Lee H, Ko MJ. In Situ Grown MWCNTs/MXenes nanocomposites on carbon cloth for high-performance flexible supercapacitors. Adv Funct Mater 2020;30:2002739.

    Article  CAS  Google Scholar 

  39. Levitt A, Zhang J, Dion G, Gogotsi Y, Razal JM. MXene-based fibers, yarns, and fabrics for wearable energy storage devices. Adv Funct Mater 2020;30:2000739.

    Article  CAS  Google Scholar 

  40. Li J, Yuan XT, Lin C, Yang YQ, Xu L, Du X, Xie JL, Lin JH, Sun JL. Achieving high Pseudocapacitance of 2D Titanium carbide (MXene) by cation intercalation and surface modification. Adv Energy Mater 2017;7:1602725.

    Article  Google Scholar 

  41. Lv FJ, Ma HT, Shen LX, Jiang Y, Sun TR, Ma JL, Geng XD, Kiran A, Zhu N. Wearable helical molybdenum nitride supercapacitors for self-powered healthcare smartsensors. ACS Appl Mater Interfaces 2021;13:29780.

    Article  CAS  Google Scholar 

  42. Wang YM, Wang X, Li XF, Li XL, Liu Y, Bai Y, Xiao HH, Yuan GH. A high-performance, tailorable, wearable, and foldable solid-state supercapacitor enabled by arranging pseudocapacitive groups and MXene flakes on textile electrode surface. Adv Funct Mater 2020;31:2008185.

    Article  Google Scholar 

  43. Wang YM, Wang X, Li XL, Bai Y, Xiao HH, Liu Y, Yuan GH. Scalable fabrication of polyaniline nanodots decorated MXene film electrodes enabled by viscous functional inks for high-energy-density asymmetric supercapacitors. Chem Eng J 2021;405:126664.

    Article  CAS  Google Scholar 

  44. Wang KL, Zheng BC, Mackinder M, Baule N, Qiao H, Jin H, Schuelke T, Fan QH. Graphene wrapped MXene via plasma exfoliation for all-solid-state flexible supercapacitors. Energy Storage Mater 2019;20:299.

    Article  Google Scholar 

  45. Xu J, Hu XH, Wang XH, Wang X, Ju YF, Ge SH, Lu XL, Ding JN, Yuan NY, Gogotsi Y. Low-Temperature pseudocapacitive energy storage in Ti3C2T MXene. Energy Storage Mater 2020;33:382–9.

    Article  Google Scholar 

  46. VahidMohammadi A, Moncada J, Chen H, Kayali E, Orangi J, Carrero CA, Beidaghi M. Thick and freestanding MXene/PANI pseudocapacitive electrodes with ultrahigh specific capacitance. J Mater Chem A 2018;6:22123.

    Article  CAS  Google Scholar 

  47. Zhao J, Ji GC, Li Y, Hu RF, Zheng JP. Preparation of a self-healing polyaniline-based gel and its application as a healable all-in-one capacitor. Chem Eng J 2021;420:129790.

    Article  CAS  Google Scholar 

  48. Boota M, Gogotsi Y. MXene—Conducting Polymer Asymmetric Pseudocapacitors. Adv Energy Mater 2018;9:1802917.

    Article  Google Scholar 

  49. Li R, Xing F, Li TY, Zhang HM, Yan JW, Zheng Q, Li XF. Intercalated polyaniline in V2O5 as a unique vanadium oxide bronze cathode for highly stable aqueous zinc ion battery. Energy Storage Mater 2021;38:590–8.

    Article  Google Scholar 

  50. Liu FW, Luo SJ, Liu D, Chen W, Huang Y, Dong L, Wang L. Facile processing of free-standing Polyaniline/SWCNT film as an integrated electrode for flexible supercapacitor application. ACS Appl Mater Interface 2017;9:33791–801.

    Article  CAS  Google Scholar 

  51. Cong H-P, Ren X-C, Wang P, Yu S-H. Flexible graphene–polyaniline composite paper for high-performance supercapacitor. Energy Environ Sci 2013;6:1185–91.

    Article  CAS  Google Scholar 

  52. Yan J, Ren CE, Maleski K, Hatter CB, Anasori B, Urbankowski P, Sarycheva A, Gogotsi Y. Flexible MXene/Graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv Funct Mater 2017;27:1701264.

    Article  Google Scholar 

  53. Ma YN, Liu NS, Li LY, Hu XK, Zou ZG, Wang JB, Luo SJ, Gao YH. A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances. Nat Commun 2017;8:1207.

    Article  Google Scholar 

  54. Li ZK, Zhang SM, Chen YH, Ling HN, Zhao LB, Luo GX, Wang XC, Hartel MC, Liu H, Xue YM, Haghniaz R, Lee K, Sun WJ, Kim H, Lee J, Zhao YC, Zhao YP, Emaminejad S, Ahadian S, Ashammakhi N, Dokmeci MR, Jiang ZD, Khademhosseini A. Gelatin methacryloyl-based tactile sensors for medical wearables. Adv Funct Mater 2020;30:2003601.

    Article  CAS  Google Scholar 

  55. Li X, Fan YJ, Li HY, Cao JW, Xiao YC, Wang Y, Liang F, Wang HL, Jiang Y, Wang ZL, Zhu G. Ultracomfortable Hierarchical Nanonetwork for Highly Sensitive Pressure Sensor. ACS Nano 2020;14:9605–12.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for the financial support from State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University (Grant No. KF2112); National Natural Science Foundation of China (Grant No. 22074010); National Key Research and Development Program of China (Grant No. 2018AAA0100300; 2020YFB2008502); and Zhang Dayu School of Chemistry, Dalian University of Technology, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changkai Sun, Chengyi Hou or Nan Zhu.

Ethics declarations

Conflicts of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5806 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Cui, Z., Du, Y. et al. Wearable Fiber-Based Supercapacitors Enabled by Additive-Free Aqueous MXene Inks for Self-Powering Healthcare Sensors. Adv. Fiber Mater. 4, 1535–1544 (2022). https://doi.org/10.1007/s42765-022-00187-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-022-00187-y

Keywords

Navigation