Skip to main content

Advertisement

Log in

Deformable Textile-Structured Triboelectric Nanogenerator Knitted with Multifunctional Sensing Fibers for Biomechanical Energy Harvesting

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Fibers and textiles that harvest mechanical energy via the triboelectric effect are promising candidates as power supplies for wearable electronics. However, triboelectric fibers and textiles are often hindered by problems such as complex fabrication processes, limited length, performances below the state-of-the-art of 2D planar configurations, etc. Here, we demonstrated a scalable fabrication of core-sheath-structured elastomer triboelectric fibers that combine silicone hollow tubes with gel-electrodes. Gel-electrodes were fabricated via a facile freeze–thawing process of blending polyvinyl alcohol (PVA), gelatin, glycerin, poly (3,4-ethylene dioxythiophene): poly (styrene sulfonate) (PEDOT: PSS), and sodium chloride (NaCl). Such fibers can also be knitted into deformable triboelectric nanogenerator textiles with high electrical outputs up to 106 V and 0.8 μA, which could work as reliable power supplies for small electronics. Moreover, we demonstrated fabric materials recognition, Morse code communication, and human-motion-recognition capabilities, making such triboelectric fiber platform an exciting avenue for multifunctional wearable systems and human–machine interaction.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ghosh R, Pin KY, Reddy VS, Jayathilaka W, Ji D, Serrano-García W, Bhargava SK, Ramakrishna S, Chinnappan A. Micro/nanofiber-based noninvasive devices for health monitoring diagnosis and rehabilitation. Appl Phys Rev 2020;7:041309.

    Article  CAS  Google Scholar 

  2. Heo JS, Hossain MF, Kim I. Challenges in design and fabrication of flexible/stretchable carbon-and textile-based wearable sensors for health monitoring: a critical review. Sensors 2020;20:3927.

    Article  CAS  Google Scholar 

  3. Liu X, Miao J, Fan Q, Zhang W, Zuo X, Tian M, Zhu S, Zhang X, Qu L. Smart textile based on 3D stretchable silver nanowires/MXene conductive networks for personal healthcare and thermal management. ACS Appl Mater Interfaces 2021;13:56607.

    Article  CAS  Google Scholar 

  4. Yin R, Wang D, Zhao S, Lou Z, Shen G. Wearable sensors-enabled human–machine interaction systems: from design to application. Adv Funct Mater 2021;31:2008936.

    Article  CAS  Google Scholar 

  5. Zhu C, Li R, Chen X, Chalmers E, Liu X, Wang Y, Xu BB, Liu X. Ultraelastic yarns from curcumin-assisted ELD toward wearable human-machine interface textiles. Adv Sci 2020;7:2002009.

    Article  CAS  Google Scholar 

  6. Zhong W, Ming X, Li W, Jia K, Jiang H, Ke Y, Li M, Wang D. Wearable human-machine interaction device integrated by all-textile-based tactile sensors array via facile cross-stitch. Sensor Actuat A Phys 2022;333:113240.

    Article  CAS  Google Scholar 

  7. Dong K, Peng X, Wang ZL. Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence. Adv Mater 2020;32:1902549.

    Article  CAS  Google Scholar 

  8. Wang W, Yu A, Zhai J, Wang ZL. Recent progress of functional fiber and textile triboelectric nanogenerators: towards electricity power generation and intelligent sensing. Adv Fiber Mater 2021;3:394.

    Article  CAS  Google Scholar 

  9. Chen B, Tang W, Wang ZL. Advanced 3D printing-based triboelectric nanogenerator for mechanical energy harvesting and self-powered sensing. Mater Today 2021;50:224.

    Article  CAS  Google Scholar 

  10. Rui P, Zhang W, Wang P. Super-durable and highly efficient electrostatic induced nanogenerator circulation network initially charged by a triboelectric nanogenerator for harvesting environmental energy. ACS Nano 2021;15:6949.

    Article  CAS  Google Scholar 

  11. Dong L, Wang M, Wu J, Zhu C, Shi J, Morikawa H. Stretchable, adhesive, self-healable, and conductive hydrogel-based deformable triboelectric nanogenerator for energy harvesting and human motion sensing. ACS Appl Mater Interfaces 2022;14:9126.

    Article  Google Scholar 

  12. He M, Du W, Feng Y, Li S, Wang W, Zhang X, Yu A, Wan L, Zhai J. Flexible and stretchable triboelectric nanogenerator fabric for biomechanical energy harvesting and self-powered dual-mode human motion monitoring. Nano Energy 2021;86:106058.

    Article  CAS  Google Scholar 

  13. Dong C, Leber A, Das Gupta T, Chandran R, Volpi M, Qu Y, Nguyen-Dang T, Bartolomei N, Yan W, Sorin F. High-efficiency super-elastic liquid metal based triboelectric fibers and textiles. Nat Commun 2020;11:3537.

    Article  CAS  Google Scholar 

  14. Dong K, Wang Y-C, Deng J, Dai Y, Zhang SL, Zou H, Gu B, Sun B, Wang ZL. A highly stretchable and washable all-yarn-based self-charging knitting power textile composed of fiber triboelectric nanogenerators and supercapacitors. ACS Nano 2017;11:9490.

    Article  CAS  Google Scholar 

  15. Ma L, Wu R, Patil A, Yi J, Liu D, Fan X, Sheng F, Zhang Y, Liu S, Shen S. Acid and alkali-resistant textile triboelectric nanogenerator as a smart protective suit for liquid energy harvesting and self-powered monitoring in high-risk environments. Adv Funct Mater 2021;31:2102963.

    Article  CAS  Google Scholar 

  16. Rezaei J, Nikfarjam A. Rib stitch knitted extremely stretchable and washable textile triboelectric nanogenerator. Adv Mater Technol 2021;6:2000983.

    Article  CAS  Google Scholar 

  17. Xu F, Dong S, Liu G, Pan C, Guo ZH, Guo W, Li L, Liu Y, Zhang C, Pu X. Scalable fabrication of stretchable and washable textile triboelectric nanogenerators as constant power sources for wearable electronics. Nano Energy 2021;88:106247.

    Article  CAS  Google Scholar 

  18. Yu A, Pu X, Wen R, Liu M, Zhou T, Zhang K, Zhang Y, Zhai J, Hu W, Wang ZL. Core–shell-yarn-based triboelectric nanogenerator textiles as power cloths. ACS Nano 2017;11:12764.

    Article  CAS  Google Scholar 

  19. Wang W, Yu A, Liu X, Liu Y, Zhang Y, Zhu Y, Lei Y, Jia M, Zhai J, Wang ZL. Large-scale fabrication of robust textile triboelectric nanogenerators. Nano Energy 2020;71:104605.

    Article  CAS  Google Scholar 

  20. Li Y, Zhang Y, Yi J, Peng X, Cheng R, Ning C, Sheng F, Wang S, Dong K, Wang ZL. Large-scale fabrication of core‐shell triboelectric braided fibers and power textiles for energy harvesting and plantar pressure monitoring. EcoMat 2022;3:12191–12203.

  21. Zheng L, Zhu M, Wu B, Li Z, Sun S, Wu P. Conductance-stable liquid metal sheath-core microfibers for stretchy smart fabrics and self-powered sensing. Sci Adv. 2021;7:4041.

    Article  Google Scholar 

  22. Zhang D, Tang Y, Zhang Y, Yang F, Liu Y, Wang X, Yang J, Gong X, Zheng J. Highly stretchable, self-adhesive, biocompatible, conductive hydrogels as fully polymeric strain sensors. J Mater Chem A 2020;8:20474.

    Article  CAS  Google Scholar 

  23. Wen J, Yang J, Wang W, Li M, Peng F, Bian J, Sun R. Synthesis of hemicellulose hydrogels with tunable conductivity and swelling behavior through facile one-pot reaction. Int J Biol Macromol 2020;154:1528.

    Article  CAS  Google Scholar 

  24. Zhang X, Chen J, He J, Bai Y, Zeng H. Mussel-inspired adhesive and conductive hydrogel with tunable mechanical properties for wearable strain sensors. J Colloid Interface Sci 2021;585:420.

    Article  CAS  Google Scholar 

  25. Cao S, Tong X, Dai K, Xu Q. A super-stretchable and tough functionalized boron nitride/PEDOT: PSS/poly (N-isopropylacrylamide) hydrogel with self-healing, adhesion, conductive and photothermal activity. J Mater Chem A 2019;7:8204.

    Article  CAS  Google Scholar 

  26. Reis EFd, Campos FS, Lage AP, Leite RC, Heneine LG, Vasconcelos WL, Lobato ZIP, Mansur HS. Synthesis and characterization of poly (vinyl alcohol) hydrogels and hybrids for rMPB70 protein adsorption. Mater Res. 2006;9:185.

    Article  Google Scholar 

  27. Zhang P, Chen Y, Guo ZH, Guo W, Pu X, Wang ZL. Stretchable, transparent, and thermally stable triboelectric nanogenerators based on solvent-free ion-conducting elastomer electrodes. Adv Funct Mater 2020;30:1909252.

    Article  CAS  Google Scholar 

  28. Yang Y, Yang Y, Cao Y, Wang X, Chen Y, Liu H, Gao Y, Wang J, Liu C, Wang W. Anti-freezing, resilient and tough hydrogels for sensitive and large-range strain and pressure sensors. Chem Eng J 2021;403:126431.

    Article  CAS  Google Scholar 

  29. Zhou Z, Qian C, Yuan W. Self-healing, anti-freezing, adhesive and remoldable hydrogel sensor with ion-liquid metal dual conductivity for biomimetic skin. Compos Sci Technol 2021;203:108608.

    Article  CAS  Google Scholar 

  30. Hu O, Chen G, Gu J, Lu J, Zhang J, Zhang X, Hou L, Jiang X. A facile preparation method for anti-freezing, tough, transparent, conductive and thermoplastic poly (vinyl alcohol)/sodium alginate/glycerol organohydrogel electrolyte. Int J Biol Macromol 2020;164:2512.

    Article  CAS  Google Scholar 

  31. Wu M, Wang X, Xia Y, Zhu Y, Zhu S, Jia C, Guo W, Li Q, Yan Z. Stretchable freezing-tolerant triboelectric nanogenerator and strain sensor based on transparent, long-term stable, and highly conductive gelatin-based organohydrogel. Nano Energy. 2022;95:106967.

    Article  CAS  Google Scholar 

  32. Zhao X, Wang Z, Liu Z, Yao S, Zhang J, Zhang Z, Huang T, Zheng L, Wang ZL, Li L. Anti-freezing and stretchable triboelectric nanogenerator based on liquid electrode for biomechanical sensing in extreme environment. Nano Energy. 2022;96:107067.

    Article  CAS  Google Scholar 

  33. Liu L, Yang X, Zhao L, Xu W, Wang J, Yang Q, Tang Q. Nanowrinkle-patterned flexible woven triboelectric nanogenerator toward self-powered wearable electronics. Nano Energy 2020;73:104797.

    Article  CAS  Google Scholar 

  34. Fan K, Wei D, Zhang Y, Wang P, Tao K, Yang R. A whirligig-inspired intermittent-contact triboelectric nanogenerator for efficient low-frequency vibration energy harvesting. Nano Energy 2021;90:106576.

    Article  CAS  Google Scholar 

  35. Peets P, Leito I, Pelt J, Vahur S. Identification and classification of textile fibres using ATR-FT-IR spectroscopy with chemometric methods. Spectrochim Acta A 2017;173:175.

    Article  CAS  Google Scholar 

  36. Liu S, Zheng W, Yang B, Tao X. Triboelectric charge density of porous and deformable fabrics made from polymer fibers. Nano Energy 2018;53:383.

    Article  CAS  Google Scholar 

  37. Yu A, Wang W, Li Z, Liu X, Zhang Y, Zhai J. Large-scale smart carpet for self-powered fall detection. Adv Mater Technol 2020;5:1900978.

    Article  CAS  Google Scholar 

  38. Wu R, Ma L, Patil A, Meng Z, Liu S, Hou C, Zhang Y, Yu W, Guo W, Liu XY. Graphene decorated carbonized cellulose fabric for physiological signal monitoring and energy harvesting. J Mater Chem A 2020;8:12665.

    Article  CAS  Google Scholar 

  39. Ning C, Dong K, Cheng R, Yi J, Ye C, Peng X, Sheng F, Jiang Y, Wang ZL. Flexible and stretchable fiber-shaped triboelectric nanogenerators for biomechanical monitoring and human-interactive sensing. Adv Funct Mater 2021;31:2006679.

    Article  CAS  Google Scholar 

  40. Wang M, Dong L, Wu J, Shi J, Gao Q, Zhu C, Morikawa H. Leaf-meridian bio-inspired nanofibrous electronics with uniform distributed microgrid and 3D multi-level structure for wearable applications. npj Flex Electron 2022,6:1.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI (Grant number JP20H00288).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunhong Zhu or Hideaki Morikawa.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 3237 KB)

Supplementary file2 (DOCX 407 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, L., Wang, M., Wu, J. et al. Deformable Textile-Structured Triboelectric Nanogenerator Knitted with Multifunctional Sensing Fibers for Biomechanical Energy Harvesting. Adv. Fiber Mater. 4, 1486–1499 (2022). https://doi.org/10.1007/s42765-022-00181-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-022-00181-4

Keywords

Navigation