Skip to main content

Advertisement

Log in

Recent Progress in Flax Fiber-Based Functional Composites

  • Review
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

In recent years, flax fiber as a green and renewable resources have attracted considerable attention to be used as reinforcement in composites, using various technology. This review presents a summary of recent developments of flax fiber-based functional composites toward energy, biomedical, and environment. Firstly, we analyze the design and fabrication strategies, which are used for preparation of flax-based functional composites. The most promising applications of flax fiber-based composites are discussed subsequently. It is believed that flax fiber as a functional composites will play a crucial role in the field of energy, biomedical, and environment mainly attributed to its unique properties, such as specific mechanical properties, good biocompatibility, eco-friendliness, cost-effectiveness, and amenability to various functional design and manufacturing needs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bergfjord C, Karg S, Rast-Eicher A, Nosch ML, Mannering U, Allaby RG, Murphy BM, Holst B. Comment on “30,000-year-old wild flax fibers.” Science 2010;328:1634.

    Article  CAS  Google Scholar 

  2. Morin S, Lecart B, Istasse T, Grand CBM, Richel A. Effect of a low melting temperature mixture on the surface properties of lignocellulosic flax bast fibers. Int J Biol Macromol 2020;148:851–6.

    Article  CAS  Google Scholar 

  3. Hachem ZE, Célino A, Challita G, Branchu S, Fréour S. Dimensional variation and evolution of mechanical properties of wet aged composites reinforced with flax fibers. J Compos Mater 2020;55:1131–48.

    Article  Google Scholar 

  4. Mokshina N, Gorshkov O, Galinousky D, Gorshkova T. Genes with bast fiber-specific expression in flax plants - molecular keys for targeted fiber crop improvement. Ind Crops Prod 2020;152:1–14.

    Article  Google Scholar 

  5. Ewulonu CM, Liu X, Wu M, Yong H. Lignin-containing cellulose nanomaterials: a promising new nanomaterial for numerous applications. J Bioresour Bioprod 2019;4:3–10.

    Article  CAS  Google Scholar 

  6. Joseph B, Sagarika VK, Sabu C, Kalarikkal N, Thomas S. Cellulose nanocomposites: fabrication and biomedical applications. J Bioresour Bioprod 2020;5:223–37.

    Article  CAS  Google Scholar 

  7. Wei DW, Wei H, Gauthier AC, Song J, Xiao H. Superhydrophobic modification of cellulose and cotton textiles: Methodologies and applications. J Bioresour Bioprod 2020;5:1–15.

    Article  CAS  Google Scholar 

  8. Xia Z, Li J, Zhang J, Zhang X, Zhang J. Processing and valorization of cellulose, lignin and lignocellulose using ionic liquids. J Bioresour Bioprod 2020;5:79–98.

    Article  CAS  Google Scholar 

  9. Megahed M, Abo-bakr RM, Mohamed SA. Optimization of hybrid natural laminated composite beams for a minimum weight and cost design. Compos Struct 2020;239:111984.

    Article  Google Scholar 

  10. Charlton BA, Ehrensing D. Fiber and oilseed flax performance. In: Annual report Oregon State University; 2001. pp. 36–40.

  11. Sava C, Ichim M. Yarns and woven fabrics made from cotton and cottonised flax blends for upholstery applications. Fibres Text East Eur 2015;23:30–4.

    Article  Google Scholar 

  12. Lazko J, Landercy N, Laoutid F, Dangreau L, Huguet MH, Talon O. Flame retardant treatments of insulating agro-materials from flax short fibres. Polym Degrad Stab 2013;98:1043–51.

    Article  CAS  Google Scholar 

  13. Werf H, Turunen LP. The environmental impacts of the production of hemp and flax textile yarn. Ind Crops Prod 2017;27:1–10.

    Article  Google Scholar 

  14. Dillon B, Pedram S, Amir F. Post-impact residual strength and resilience of sandwich panels with natural fiber composite faces. J Build Eng 2021;38:1–34.

    Google Scholar 

  15. Martin N, Davies P, Baley C. Comparison of the properties of scutched flax and flax tow for composite material reinforcement. Ind Crops Prod 2014;61:284–92.

    Article  CAS  Google Scholar 

  16. Jeyapragash R, Srinivasan V, Sathiyamurthy S. Mechanical properties of natural fiber/particulate reinforced epoxy composites-a review of the literature. Mater Today 2020;22:1–5.

    Google Scholar 

  17. Mrajji O, Wazna ME, Bouari AE, Cherkaoui O. The properties of feather fiber-reinforced polymer composites: a review. J Nat Fibers 2021. https://doi.org/10.1080/15440478.2020.1870633.

  18. Wambua P, Ivens J, Verpoest I. Natural fibers: can they replace glass in fibre reinforced plastics. Compos Sci Technol 2001;63:1259–64.

    Article  Google Scholar 

  19. Jiang Y, Plog J, Yarin AL, Pan Y. Direct ink writing of surface-modified flax elastomer composites. Compos B Eng 2020;194:1–24.

    Article  Google Scholar 

  20. Kulmaa A, Skórkowska-Telichowska K, Kostyn K, Szatkowski M, Skała J, Drulis-Kawa Z, Preisner M, Zuk M, Szperlik J, Wang YF, Szop J. New flax producing bioplastic fibers for medical purposes. Ind Crops Prod 2015;68:80–9.

    Article  Google Scholar 

  21. Paladini F, Picca RA, Sportelli MC, Cioffi N, Sannino A, Pollini M. Surface chemical and biological characterization of flax fabrics modified with silver nanoparticles for biomedical applications. Mater Sci Eng C 2015;52:1–10.

    Article  CAS  Google Scholar 

  22. Rothon RN. Functional fillers for plastics. Weinheim: Wiley-VCH; 2005.

    Google Scholar 

  23. Gassan J, Chate A, Bledzki AK. Calculation of elastic properties of natural fibers. J Mater Sci 2001;36:3715–20.

    Article  CAS  Google Scholar 

  24. Malkapuram R, Kumar V, Negi YS. Recent development in natural fiber reinforced polypropylene composites. J Reinf Plast Compos 2009;28:1169–89.

    Article  CAS  Google Scholar 

  25. Eichhorn SJ, Baillie CA, Zafeiropoulos N, Mwaikambo LY, Ansell MP, Dufresne A, Entwistle KM, Herrera-Franco PJ, Escamilla GC, Groom L, Hughes M, Hill C, Rials TG, Wild PM. Review: current international research into cellulosic fibres and composites. J Mater Sci 2001;36:2107–31.

    Article  CAS  Google Scholar 

  26. Islam MZ, Ulven CA. A thermographic and energy based approach to define high cycle fatigue strength of flax fiber reinforced thermoset composites. Compos Sci Technol 2020;196:1–11.

    Article  Google Scholar 

  27. Wang Y, Zhu W, Wan B, Meng Z, Han B. Hygrothermal ageing behavior and mechanism of carbon nanofibers modified flax fiber-reinforced epoxy laminates. Compos Part A Appl Sci Manuf 2021;140:106142.

    Article  CAS  Google Scholar 

  28. Zhang Y, Mao T, Wu H, Cheng L, Zheng L. Carbon nanotubes grown on flax fabric as hierarchical all-carbon flexible electrodes for supercapacitors. Adv Mater Interfaces 2017;4:1–6.

    Google Scholar 

  29. Xu J, Gao X, Zhang C, Yin S. Flax fiber-reinforced composite lattice cores: a low-cost and recyclable approach. Mater Des 2017;133:444–54.

    Article  Google Scholar 

  30. He D, Wu L, Yao Y, Zhang J, Huang Z-H, Wang M-X. A facile route to high nitrogen-containing porous carbon fiber sheets from biomass-flax for high-performance flexible supercapacitors. Appl Surf Sci 2020;507:145108.

    Article  CAS  Google Scholar 

  31. Dittenber DB, Gangarao HVS. Critical review of recent publications on use of natural composites in infrastructure. Compos Part A Appl Sci Manuf 2012;43:1419–29.

    Article  Google Scholar 

  32. Yan L, Chouw N, Jayaraman K. Flax fibre and its composites-a review. Compos B Eng 2014;56:296–317.

    Article  CAS  Google Scholar 

  33. Maity S, Gon DP, Paul P. A review of flax nonwovens: manufacturing, properties, and applications. J Nat Fibers 2014;111:365–90.

    Article  Google Scholar 

  34. El Moussi Y, Otazaghine B, Caro-Bretelle A-S, Sonnier R, Taguet A, Le Moigne N. Controlling interfacial interactions in LDPE/flax fibre biocomposites by a combined chemical and radiation-induced grafting approach. Cellulose 2020;27:6333–51.

    Article  Google Scholar 

  35. Gonzalez-Lopez L, Claramunt J, Hsieh YL, Ventura H, Ardanuy M. Surface modification of flax nonwovens for the development of sustainable, high performance, and durable calcium aluminate cement composites. Compos B Eng 2020;191:1–33.

    Article  Google Scholar 

  36. Teraube O, Agopian J-C, Petit E, Metz F, Batisse N, Charlet K, Dubois M. Surface modification of sized vegetal fibers through direct fluorination for eco-composites. J Fluorine Chem 2020;238:1–10.

    Article  Google Scholar 

  37. Liu Y, Huang G, An C, Chen X, Zhang P, Feng R, Xiong W. Use of nano-tio2 self-assembled flax fiber as a new initiative for immiscible oil/water separation. J Clean Prod 2019;249:1–33.

    Article  Google Scholar 

  38. Chegdani F, Takabi B, El Mansori M, Tai BL, Bukkapatnam STS. Effect of flax fiber orientation on machining behavior and surface finish of natural fiber reinforced polymer composites. J Manuf Process 2020;54:337–46.

    Article  Google Scholar 

  39. Martin N, Mouret N, Davies P, Baley C. Influence of the degree of retting of flax fibers on the tensile properties of single fibers and short fiber/polypropylene composites. Ind Crops Prod 2013;49:755–67.

    Article  CAS  Google Scholar 

  40. Mahesh V, Joladarashi S, Kulkarni SM. A comprehensive review on material selection for polymer matrix composites subjected to impact load. Def Technol 2020;17:257–77.

    Article  Google Scholar 

  41. Dehabadi L, Karoyo AH, Soleimani M, Alabi WO, Simonson CJ, Wilson LD. Flax biomass conversion via controlled oxidation: facile tuning of physicochemical properties. Bioengineering 2020;7:38.

    Article  CAS  Google Scholar 

  42. Zhang K, Zheng S, Liu Y, Lin J. Isolation of hierarchical cellulose building blocks from natural flax fibers as a separation membrane barrier. Int J Biol Macromol 2020;155:666–73.

    Article  CAS  Google Scholar 

  43. Fathi B, Harirforoush M, Foruzanmehr M, Elkoun S, Robert M. Effect of tempo oxidation of flax fibers on the grafting efficiency of silane coupling agents. J Mater Sci 2017;52:10624–36.

    Article  CAS  Google Scholar 

  44. Wang X, Petru M. Effect of hygrothermal aging and surface treatment on the dynamic mechanical behavior of flax fiber reinforced composites. Materials 2019;12:3405.

    Article  Google Scholar 

  45. Pucci MF, Liotier PJ, Drapier S. Wicking tests for unidirectional fabrics: measurements of capillary parameters to evaluate capillary pressure in liquid composite molding processes. J Vis Exp 2017;119:e55059.

    Google Scholar 

  46. Yu T, Wu CM, Wang CJ, Rwei SP. Effects of surface modification on the mechanical properties of flax/β-polypropylene composites. Compos Interface 2013;20:483–96.

    Article  Google Scholar 

  47. Qu Z, Pan X, Hu X, Guo Y, Shen Y. Evaluation of nano-mechanical behavior on flax fiber metal laminates using an atomic force microscope. Materials 2019;12:3363.

    Article  CAS  Google Scholar 

  48. Mahmoud MA. Oil spill cleanup by raw flax fiber: modification effect, sorption isotherm, kinetics and thermodynamics. Arab J Chem 2020;13:5553–63.

    Article  CAS  Google Scholar 

  49. Bozaci E, Sever K, Sarikanat M, Seki Y, Demir A, Ozdogan E, Tavman I. Effects of the atmospheric plasma treatments on surface and mechanical properties of flax fiber and adhesion between fiber–matrix for composite materials. Compos B Eng 2013;45:565–72.

    Article  CAS  Google Scholar 

  50. Alabi WO, Karoyo AH, Krishnan EN, Dehabadi L, Wilson LD, Simonson CJ. Comparison of the moisture adsorption properties of starch particles and flax fiber coatings for energy wheel applications. ACS Omega 2020;5:9529–39.

    Article  CAS  Google Scholar 

  51. Xia X, Shi X, Liu W, He S, Zhu C, Liu H. Effects of gamma irradiation on properties of pla/flax composites. Iran Polym J 2020;29:581–90.

    Article  CAS  Google Scholar 

  52. John MJ, Anandjiwala RD. Chemical modification of flax reinforced polypropylene composites. Compos Part A Appl Sci Manuf 2009;40:442–8.

    Article  Google Scholar 

  53. Samyn F, Murariu O, Bonnaud L, Duquesne S. Preparation and flame retardancy of flax fabric/polybenzoxazine laminates. Fire Mater 2020:1–13.

  54. Xie Y, Hill C, Xiao Z, Militz H, Mai C. Silane coupling agents used for natural fiber/polymer composites: a review. Compos Part A Appl Sci Manuf 2010;41:806–19.

    Article  Google Scholar 

  55. Sbardella F, Lilli M, Seghini MC, Bavasso I, Sarasini F. Interface tailoring between flax yarns and epoxy matrix by ZnO nanorods. Compos Part A Appl Sci Manuf 2020;140:1–11.

    Google Scholar 

  56. Mohan VB, Bhattacharyya D. Mechanical characterization of functional graphene nanoplatelets coated natural and synthetic fiber yarns using polymeric binders. Int J Smart Nano Mater 2020;11:1–14.

    Article  Google Scholar 

  57. Wang H, Wu H, Yang L, Yu G. Mechanical and interfacial properties of flax fiber-reinforced plastic composites based on a chemical modification method. Fiber Polym 2020;21:1498–507.

    Article  CAS  Google Scholar 

  58. Barkoula NM, Garkhail SK, Peijs T. Biodegradable composites based on flax/polyhydroxybutyrate and its copolymer with hydroxyvalerate. Ind Crops Prod 2010;31:34–42.

    Article  CAS  Google Scholar 

  59. Xiang M, Bai Y, Li Y, Wei S, Shu T, Wang H, Li P, Yu T, Yu L. An eco-friendly degumming process of flax roving without acid pickling and naclo2-bleaching. Process Biochem 2020;93:77–84.

    Article  CAS  Google Scholar 

  60. Graupner N, Lehmann K-H, Weber DE, Hilgers H-W, Müssig J. Novel low-twist bast fibre yarns from flax tow for high-performance composite applications. Materials 2020;14:105.

    Article  Google Scholar 

  61. Awais H, Nawab Y, Anjang A, Akil HM, Abidin MSZ. Effect of fabric architecture on the shear and impact properties of natural fibre reinforced composites. Compos B Eng 2020;195:1–28.

    Article  Google Scholar 

  62. Paladini F, Meikle ST, Cooper IR, Lacey J, Perugini V, Santin M. Silver-doped self-assembling di-phenylalanine hydrogels as wound dressing biomaterials. J Mater Sci Mater Med 2013;24:2461–72.

    Article  CAS  Google Scholar 

  63. Zhai W, Wang P, Legrand X, Soulat D, Ferreira M. Effects of micro-braiding and co-wrapping techniques on characteristics of flax/polypropylene-based hybrid yarn: a comparative study. Polymers 2020;12:2559.

    Article  CAS  Google Scholar 

  64. Jiang Y, Yarin AL, Pan Y. Printable highly transparent natural fiber composites. Mater Lett 2020;277:128290.

    Article  Google Scholar 

  65. Sultan MTH, Shah AUM, Jawaid M, Safri SNA. Low velocity impact and compression after impact properties of hybrid bio-composites modified with multi-walled carbon nanotubes. Compos B Eng 2019;163(455–63):1–25.

    Google Scholar 

  66. Zimniewska M, Goslinska-Kuzniarek O. Evaluation of antibacterial activity of flax fibres against the staphylococcus aureus bacteria strain. Fibres Text East Eur 2016;24:120–5.

    Article  CAS  Google Scholar 

  67. Shaker K, Ashraf M, Jabbar M, Shahid S, Nawab Y, Zia J, Rehman A. Bioactive woven flax-based composites: development and characterisation. J Ind Text 2016;46:549–61.

    Article  CAS  Google Scholar 

  68. Cheng M, Zhong Y, Kureemun U, Cao D, Hu H, Lee HP, Li S. Environmental durability of carbon/flax fiber hybrid composites. Compos Struct 2020;234:1–28.

    Article  Google Scholar 

  69. Bambach MR. Direct comparison of the structural compression characteristics of natural and synthetic fiber-epoxy composites: flax, jute, hemp, glass and carbon fibers. Fibers 2020;8:62.

    Article  CAS  Google Scholar 

  70. Sakaguchi M, Nakai A, Hamada H, Takeda N. The mechanical properties of unidirectional thermoplastic composites manufactured by a micro-braiding technique. Compos Sci Technol 2000;60:717–22.

    Article  Google Scholar 

  71. Mirdehghan A, Nosraty H, Shokrieh MM, Akhbari M. The structural and tensile properties of glass/polyester co-wrapped hybrid yarns. J Ind Text 2017;47(1979–97):1–19.

    Google Scholar 

  72. Deb S, Mitra N, Maitra S, Majumdar SB. Comparison of mechanical performance and life cycle cost of natural and synthetic fiber-reinforced cementitious composites. J Mater Civ Eng 2020;32:04020150.

    Article  Google Scholar 

  73. Yang T, Hu L, Xiong X, Noman MT, Mishra R. Sound absorption properties of natural fibers: a review. Sustainability 2020;12:1–27.

    Google Scholar 

  74. Tekinalp HL, Kunc V, Velez-Garcia GM, Duty CE, Love LJ, Naskar AK, Blue CA, Ozcan S. Highly oriented carbon fiber–polymer composites via additive manufacturing. Compos Sci Technol 2014;105:144–50.

    Article  CAS  Google Scholar 

  75. Tian X, Liu T, Yang C, Wang Q, Li D. Interface and performance of 3d printed continuous carbon fiber reinforced pla composites. Compos Part A Appl Sci Manuf 2016;88:198–205.

    Article  CAS  Google Scholar 

  76. Lee CC, Folgar F, Tucker CL. Simulation of compression molding for fiber-reinforced thermosetting polymers. Acad J Manuf Eng 1984;106:114–25.

    CAS  Google Scholar 

  77. Andrzejewski J, Szostak M. Preparation of hybrid poly(lactic acid)/flax composites by the insert overmolding process: evaluation of mechanical performance and thermomechanical properties. J Appl Polym Sci 2020;138:49646.

    Article  Google Scholar 

  78. Le Duigou A, Castro M. Moisture-induced self-shaping flax-reinforced polypropylene biocomposite actuator. Ind Crops Prod 2015;71:1–6.

    Article  Google Scholar 

  79. Ramesh M. Flax (Linum usitatissimum L.) fibre reinforced polymer composite materials: a review on preparation, properties and prospects. Prog Mater Sci 2019;102:109–66.

    Article  CAS  Google Scholar 

  80. Wang B, Tabil L, Panigrahi S. Effects of chemical treatments on mechanical and physical properties of flax fiber-reinforced composites. Sci Eng Compos Mater 2008;15:43–58.

    Article  Google Scholar 

  81. Cherif ZE, Poilâne C, FaLher T, Vivet A, Ouail N, Doudou BB, Chen J. Influence of textile treatment on mechanical and sorption properties of flax/epoxy composites. Polym Compos 2013;34:1761–73.

    Article  CAS  Google Scholar 

  82. Alimuzzaman S, Gong RH, Akonda M. Biodegradability of nonwoven flax fiber reinforced polylactic acid biocomposites. Polym Compos 2014;35:2094–102.

    Article  CAS  Google Scholar 

  83. Deng P, Chen J, Yao L, Zhang P, Zhou J. Thymine-modified chitosan with broad-spectrum antimicrobial activities for wound healing. Carbohydr Polym 2021;257:117630.

    Article  CAS  Google Scholar 

  84. Mayandi V, Choong ACW, Dhand C, Lim FP, Lakshminarayanan R. Multifunctional antimicrobial nanofibre dressings containing ε-polylysine for the eradication of bacterial bioburden and promotion of wound healing in critically colonized wounds. ACS Appl Mater Interfaces 2020;12:15989–6005.

    Article  CAS  Google Scholar 

  85. Muthukrishnan L, Muralidharan C, Nanda A. Bio-engineering and cellular imaging of silver nanoparticles as weaponry against multidrug resistant human pathogens. J Photochem Photobiol B Biol 2019;194:119–27.

    Article  CAS  Google Scholar 

  86. Zhang Y, Pan X, Liao S, Jiang C, Chen L. Quantitative proteomics reveals the mechanism of silver nanoparticles against multidrug-resistant pseudomonas aeruginosa biofilms. J Proteome Res 2020;19:3109–22.

    Article  CAS  Google Scholar 

  87. Khan T, Yasmin A, Townley HE. An evaluation of the activity of biologically synthesized silver nanoparticles against bacteria, fungi and mammalian cell lines. Colloids Surf B 2020;194:1–35.

    Article  Google Scholar 

  88. Almasoud N, Alomar TS, Awad MA, Soliman DA, El-Tohamy MF. Multifunctional green silver nanoparticles in pharmaceutical and biomedical applications. Green Chem Lett Rev 2020;13:316–27.

    Article  CAS  Google Scholar 

  89. Niloy M, Hossain M, Takikawa M, Shakil M, Polash S, Mahmud K, Uddin M, Alam M, Shubhra R, Shawan M, Saha T, Takeoka S, Hasan M, Sarker S. Synthesis of biogenic silver nanoparticles using caesalpinia digyna and investigation of their antimicrobial activity and in vivo biocompatibility. ACS Appl Bio Mater 2020;3:7722–33.

    Article  CAS  Google Scholar 

  90. Song Y, Shi Z, Hu G, Xiong C, Isogai A, Yang Q. Recent advances of cellulose-based piezoelectric and triboelectric nanogenerators for energy harvesting: a review. J Mater Chem A 2021;9:1910–37.

    Article  CAS  Google Scholar 

  91. Zhang J, Chen Z, Wang G, Hou L, Yuan C. Eco-friendly and scalable synthesis of micro-/mesoporous carbon sub-microspheres as competitive electrodes for supercapacitors and sodium-ion batteries. Appl Surf Sci 2020;533:1–10.

    Article  Google Scholar 

  92. He S, Chen W. Application of biomass-derived flexible carbon cloth coated with mno2 nanosheets in supercapacitors. J Power Sources 2015;294:150–8.

    Article  CAS  Google Scholar 

  93. Wahid F, Zhao XJ, Duan YX, Zhao XQ, Zhong C. Designing of bacterial cellulose-based superhydrophilic/underwater superoleophobic membrane for oil/water separation. Carbohydr Polym 2021;257:117611.

    Article  CAS  Google Scholar 

  94. Yu P, Wang X, Zhang K, Wu M, Zhang J. Continuous purification of simulated wastewater based on rice straw composites for oil/water separation and removal of heavy metal ions. Cellulose 2020;27:5223–39.

    Article  CAS  Google Scholar 

  95. Luo Y, Wang X, Zhang R, Singh M, Ammar A, Cousins D, Hassan MK, Ponnamma D, Adham S, Al-Maadeed MAA, Karim A. Vertically oriented nanoporous block copolymer membranes for oil/water separation and filtration. Soft Matter 2020;16:9648–54.

    Article  CAS  Google Scholar 

  96. Huang J, Yu C. Determination of cellulose, hemicellulose and lignin content using near-infrared spectroscopy in flax fiber. Text Res J 2019;89(24):1–9.

    Google Scholar 

  97. Faissal C, Mohamed EM, Amen-Allah C. Cutting behavior of flax fibers as reinforcement of biocomposite structures involving multiscale hygrometric shear. Compos Part B Eng 2021;211:108660.

    Article  Google Scholar 

  98. Guadagnuolo F. Simplified design of masonry ring-beams reinforced by flax fibers for existing buildings retrofitting. Buildings 2020;10:12.

    Article  Google Scholar 

  99. Ouakarrouch M, Laaroussi N, Garoum M. Thermal characterization of a new bio-composite building material based on plaster and waste chicken feathers. Renew Energy Environ Sustain 2020;5:2.

    Article  CAS  Google Scholar 

  100. Amatosa Jr TA, Loretero ME. Bamboo waste-based bio-composite substance: an application for low-cost construction materials. Specta J Technol 2020;4:41–8.

    Article  Google Scholar 

  101. Fonseca RPd, Rocha JC, Cheriaf M. Mechanical properties of mortars reinforced with amazon rainforest natural fibers. Materials 2020;14:155.

    Article  Google Scholar 

  102. Yan L, Chouw N. Behavior and analytical modeling of natural flax fibre-reinforced polymer tube confined plain concrete and coir fibre-reinforced concrete. J Compos Mater 2013;47:2133–48.

    Article  Google Scholar 

  103. Yan L, Duchez A, Chouw N. Effect of bond on compressive behaviour of flax fibre reinforced polymer tube-confined coir fibre reinforced concrete. J Reinf Plast Compos 2012;32:273–85.

    Article  Google Scholar 

  104. Duigou AL, Deux JM, Davies P, Baley C. Plla/flax mat/balsa bio-sandwich-environmental impact and simplified life cycle analysis. Appl Compos Mater 2012;19:363–78.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Heilongjiang Province (Grant No. LH2021B032), Heilongjiang Provincial Universities Basal Research Foundation-Youth Innovation Talent Project (Grant No. 145109210), National Natural Science Foundation of China (Grant No. 22005077), and China Postdoctoral Science Foundation (Grant No. 2021M690818).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Cheng.

Ethics declarations

Conflict of interest

The authors state that there are no conflicts of interest to disclose.

Consent for publication

All authors have reviewed and approved the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Tang, R., Dai, J. et al. Recent Progress in Flax Fiber-Based Functional Composites. Adv. Fiber Mater. 4, 171–184 (2022). https://doi.org/10.1007/s42765-021-00115-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-021-00115-6

Keywords

Navigation