Skip to main content
Log in

Engineered Spindles of Little Molecules Around Electrospun Nanofibers for Biphasic Drug Release

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Biphasic drug release is a popular advanced drug controlled release profile that has been drawing increasing attention from many fields. Electrospun nanofibers and their derivatives can be act as a strong platform for developing biphasic release dosage forms. In this study, a modified coaxial electrospinning was implemented, in which little molecule solutions that contain a drug ibuprofen (IBU) and polyethylene glycol (PEG) were exploited as a sheath fluid to surround the core solutions composed of polymer ethyl cellulose (EC) and IBU. The prepared nanofiber-based structural hybrids, i.e., engineered spindles-on-a-string (SOS) products, were successfully created and subjected to a series of characterizations. Scanning electron microscopy and transmission electron microscopy results showed the engineered SOS structures. IBU and the carriers EC and PEG had good compatibility, as suggested by X-ray diffraction and Fourier transform infrared spectroscopy assessments. In vitro dissolution tests verified that the SOS products were able to provide a typical biphasic release profile, releasing 40% of the loaded IBU within 1 h in an immediate manner in the first phase, and the rest of the IBU in a sustained manner in the second phase. A combined mechanism of erosion and diffusion is proposed for manipulating the IBU molecule release behaviors.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhu M, Kikutani T, Liu T, Ramakrishna S, Tao G. Fiber changes our life. Adv Fiber Mater 2019;1:1–2.

    CAS  Google Scholar 

  2. Ding B. Advanced nanofiber materials and systems: solving global issues. Adv Fiber Mater 2020;2:45.

    Google Scholar 

  3. Shi X. Biomedical fibers and nanofibers. Adv Fiber Mater 2020;2:185.

    CAS  Google Scholar 

  4. Shan H, Si Y, Yu J, Ding B. Facile access to highly flexible and mesoporous structured silica fibrous membranes for tetracyclines removal. Chem Eng J 2021;417:129211.

    CAS  Google Scholar 

  5. Ma Y, Li D, Xiao Y, Ouyang Z, Shen M, Shi X. LDH-doped electrospun short fibers enable dual drug loading and multistage release for chemotherapy of drug-resistant cancer cells. New J Chem 2021;45:13421–8.

    CAS  Google Scholar 

  6. Xiao Y, Ma H, Fang X, Huang Y, Liu P, Shi X. Surface modification of electrospun polyethylenimine/polyvinyl alcohol nanofibers immobilized with silver nanoparticles for potential antibacterial applications. Curr Nanosci 2021;17:279–86.

    CAS  Google Scholar 

  7. Cao L, Yu X, Yin X, Si Y, Yu J, Ding B. Hierarchically maze-like structured nanofiber aerogels for effective low-frequency sound absorption. J Colloid Interf Sci 2021;597:21–8.

    CAS  Google Scholar 

  8. Wu F, He P, Chang X, Jiao W, Liu L, Si Y, Yu J, Ding B. Visible-light-driven and self-hydrogen-donated nanofibers enable rapid-deployable antimicrobial bioprotection. Small 2021;17:2100139.

    CAS  Google Scholar 

  9. Al-Jbour N, Beg M, Gimbun J, Alam A. An overview of chitosan nanofibers and their applications in the drug delivery process. Curr Drug Deliv 2019;16:272–94.

    CAS  Google Scholar 

  10. Zhu Z, Hao J, Zhu H, Sun S, Duan F, Lu S, Du M. In situ fabrication of electrospun carbon nanofibers–binary metal sulfides as freestanding electrode for electrocatalytic water splitting. Adv Fiber Mater 2021;3:117–27.

    CAS  Google Scholar 

  11. Zhao K, Lu Z, Zhao P, Kang S, Yang Y, Yu DG. Modified tri–axial electrospun functional core–shell nanofibrous membranes for natural photodegradation of antibiotics. Chem Eng J 2021;425:131455.

    CAS  Google Scholar 

  12. Li D, Wang M, Song W, Yu D, Annie-Bligh SW. Electrospun Janus beads-on-a-string structures for different types of controlled release profiles of double drugs. Biomolecules 2021;11:635.

    CAS  Google Scholar 

  13. Mofidfar M, Prausnitz M. Electrospun transdermal patch for contraceptive hormone delivery. Curr Drug Deliv 2019;16:577–83.

    CAS  Google Scholar 

  14. Mahdi H, Taghi G, Niloufar S, Mehrdad N. In-vitro and in-silico characterization of zein fiber incorporating cuminaldehyde. Food Bioprod Process 2021;128:166–76.

    Google Scholar 

  15. Liang M, Wang F, Liu M, Yu J, Si Y, Ding B. N-halamine functionalized electrospun poly(vinyl alcohol-co-ethylene) nanofibrous membranes with rechargeable antibacterial activity for bioprotective applications. Adv Fiber Mater 2019;1:126–36.

    Google Scholar 

  16. Na H, Kim B, Yoon H, Song T, Kim S, Cho C, Choi W. Fabrication and photocatalytic properties of electrospun Fe-doped TiO2 nanofibers using polyvinyl pyrrolidone precursors. Polymers 2021;13:2634.

    CAS  Google Scholar 

  17. Zheng G, Peng H, Jiang J, Kang G, Liu J, Zheng J, Liu Y. Surface functionalization of PEO nanofibers using a TiO2 suspension as sheath fluid in a modified coaxial electrospinning process. Chem Res Chin Univ 2021;37:571–7.

    CAS  Google Scholar 

  18. Liu Y, Wu F, Ding Y, Zhu B, Su Y, Zhu X. Preparation and characterization of paclitaxel/chitosan nanosuspensions for drug delivery system and cytotoxicity evaluation in vitro. Adv Fiber Mater 2019;1:152–62.

    CAS  Google Scholar 

  19. Thakral NK, Meister E, Jankovsky C, Li L, Schwabe R, Luo LB, Chen S. Prediction of in vivo supersaturation and precipitation of poorly water-soluble drugs: achievements and aspirations. Int J Pharm 2021;600:120505.

    CAS  Google Scholar 

  20. Kang S, Hou S, Chen X, Yu D, Wang L, Li X, Williams G. Energy-saving electrospinning with a concentric teflon-core rod spinneret to create medicated nanofibers. Polymers 2020;12:2421.

    CAS  Google Scholar 

  21. Yu DG. Preface-bettering drug delivery knowledge from pharmaceutical techniques and excipients. Curr Drug Deliv 2021;18:2–3.

    CAS  Google Scholar 

  22. Kang S, He Y, Yu D, Li W, Wang K. Drug-zein@lipid hybrid nanoparticles: Electrospraying preparation and drug extended release application. Colloid Surface B 2021;201:111629.

    CAS  Google Scholar 

  23. Chen HB, Khemtong C, Yang XL, Chang XL, Gao JM. Nanonization strategies for poorly water-soluble drugs. Drug Discov Today 2011;16:354–60.

    CAS  Google Scholar 

  24. Vlachou M, Kikionis S, Siamidi A, Tragou K, Kapoti S, Ioannou E, Roussis V, Tsotinis A. Fabrication and characterization of electrospun nanofibers for the modified release of the chronobiotic hormone melatonin. Curr Drug Deliv 2019;16:79–85.

    CAS  Google Scholar 

  25. Chou S, Carson D, Woodrow A. Current strategies for sustaining drug release from electrospun nanofibers. J Control Release 2015;220:584–91.

    CAS  Google Scholar 

  26. Kirtane A, Verma M, Karandikar P, Furin J, Langer R, Traverso G. Nanotechnology approaches for global infectious diseases. Nat Nanotechnol 2021;16:369–84.

    CAS  Google Scholar 

  27. Mitragotri S, Burke P, Langer R. Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat Rev Drug Discov 2014;13:655–72.

    CAS  Google Scholar 

  28. Ramakrishnan R, Gimbun J, Ramakrishnan P, Ranganathan B, Reddy S, Shanmugam G. Effect of solution properties and operating parameters on needleless electrospinning of poly(ethylene oxide) nanofibers loaded with bovine serum albumin. Curr Drug Deliv 2019;16:913–22.

    CAS  Google Scholar 

  29. Sa’adon S, Ansari M, Razak S, Anand J, Nayan N, Ismail A, Khan M, Haider M. Preparation and physicochemical characterization of a diclofenac sodium-dual layer polyvinyl alcohol patch. Polymers 2021;13:2459.

    Google Scholar 

  30. Song Y, Huang H, He D, Yang M, Wang H, Zhang H, Li J, Li Y, Wang C. Gallic acid/2-hydroxypropyl-β-cyclodextrin inclusion complexes electrospun nanofibrous webs: Fast dissolution, improved aqueous solubility and antioxidant property of gallic acid. Chem Res Chin Univ 2021;37:450–5.

    CAS  Google Scholar 

  31. Bikiaris D. Solid dispersions, Part II: new strategies in manufacturing methods for dissolution rate enhancement of poorly water-soluble drugs. Expert Opin Drug Deliv 2011;8:1663–80.

    CAS  Google Scholar 

  32. Huang W, Xiao Y, Shi X. Construction of electrospun organic/inorganic hybrid nanofibers for drug delivery and tissue engineering applications. Adv Fiber Mater 2019;1:32–45.

    Google Scholar 

  33. Kenawy E, Bowlin G, Mansfield K, Layman J, Simpson D, Sanders E, Wnek G. Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend. J Control Release 2002;81:57–64.

    CAS  Google Scholar 

  34. Wang M, Li D, Li J, Li S, Chen Z, Yu D, Liu Z, Guo J. Electrospun Janus zein-PVP nanofibers provide a two-stage controlled release of poorly water-soluble drugs. Mater Design 2020;196:109075.

    CAS  Google Scholar 

  35. Ye P, Wei S, Luo C, Wang Q, Li A, Wei F. Long-term effect against methicillin-resistant staphylococcus aureus of emodin released from coaxial electrospinning nanofiber membranes with a biphasic profile. Biomolecules 2020;10:362.

    CAS  Google Scholar 

  36. Padmakumar S, Menon D. Nanofibrous polydioxanone depots for prolonged intraperitoneal paclitaxel delivery. Curr Drug Deliv 2019;16:654–62.

    CAS  Google Scholar 

  37. Ding Y, Dou C, Chang S, Xie Z, Yu D, Liu Y, Shao J. Core-shell Eudragit S100 nanofibers prepared via triaxial electrospinning to provide a colon-targeted extended drug release. Polymers 2020;12:2034.

    CAS  Google Scholar 

  38. Wang M, Hou J, Yu D, Li S, Zhu J, Chen Z. Electrospun tri-layer nanodepots for sustained release of acyclovir. J Alloys Compd 2020;846:156471.

    CAS  Google Scholar 

  39. Zheng X, Kang S, Wang K, Yang Y, Yu D, Wan F, Williams G, Bligh S. Combination of structure-performance and shape-performance relationships for better biphasic release in electrospun Janus fibers. Int J Pharm 2021;596:120203.

    CAS  Google Scholar 

  40. Behzad D, Alireza M, Farzad K, Reza J, Atieh H, Hassan F, Bahareh F. Electrospun Doxorubicin-loaded PEO/PCL core/sheath nanofibers for chemopreventive action against breast cancer cells. J Drug Deliv Sci Technol 2021;64:102576.

    Google Scholar 

  41. Mehdi M, Hussain S, Gao BB, Shah KA, Mahar FK, Yousif M, Hussain S, Ahmed F. Fabrication and characterization of rizatriptan loaded pullulan nanofibers as oral fast-dissolving drug system. Mater Res Express. 2021;8:055404.

    CAS  Google Scholar 

  42. Balusamy B, Celebioglu A, Senthamizhan A, Uyar T. Progress in the design and development of “fast-dissolving” electrospun nanofibers based drug delivery systems: a systematic review. J Control Release 2020;326:482–509.

    CAS  Google Scholar 

  43. Celebioglu A, Uyar T. Development of ferulic acid/cyclodextrin inclusion complex nanofibers for fast -dissolving drug delivery system. Int J Pharm 2020;584:119395.

    CAS  Google Scholar 

  44. Zhao J, Cui W. Functional electrospun fibers for local therapy of cancer. Adv Fiber Mater 2020;2:229–45.

    CAS  Google Scholar 

  45. Wang Y, Tian L, Zhu T, Mei J, Chen Z, Yu D. Electrospun aspirin/Eudragit/lipid hybrid nanofibers for colon-targeted delivery using an energy-saving process. Chem Res Chin Univ 2021;37:443–9.

    CAS  Google Scholar 

  46. Wang K, Wen H, Yu D, Yang Y, Zhang D. Electrosprayed hydrophilic nanocomposites coated with shellac for colon-specific delayed drug delivery. Mater Design 2018;143:248–55.

    CAS  Google Scholar 

  47. Dong Y, Zheng Y, Zhang K, Yao Y, Wang L, Li X, Yu J, Ding B. Electrospun nanofibrous materials for wound healing. Adv Fiber Mater 2020;2:212–27.

    CAS  Google Scholar 

  48. Oliveira MF, Costa M, Rakov N, Oliveira H. Curcumin-loaded electrospun fibers: Fluorescence and antibacterial activity. Adv Fiber Mater 2020;2:256–64.

    Google Scholar 

  49. Yang X, Li L, Yang D, Nie J, Ma G. Electrospun core-shell fibrous 2D scaffold with biocompatible poly(glycerol sebacate) and poly-L-lactic acid for wound healing. Adv Fiber Mater 2020;2:105–17.

    CAS  Google Scholar 

  50. Aidana Y, Wang Y, Li J, Chang S, Wang K, Yu D. Fast dissolution electrospun medicated nanofibers for effective delivery of poorly water-soluble drugs. Curr Drug Deliv 2021. https://doi.org/10.2174/1567201818666210215110359 .

    Article  Google Scholar 

  51. Yang B, Dong Y, Shen Y, Hou A, Quan G, Pan X, Wu C. Bilayer dissolving microneedle array containing 5-fluorouracil and triamcinolone with biphasic release profile for hypertrophic scar therapy. Bioact Mater 2021;6:2400–11.

    CAS  Google Scholar 

  52. Adala I, Ramis J, Moussinga C, Janowski I, Amer M, Bennett A, Alexander C, Rose F. Mixed polymer and bioconjugate core/shell electrospun fibres for biphasic protein release. J Mater Chem B 2021;9:4120–33.

    CAS  Google Scholar 

  53. Jankovic S, O’Dwyer P, Box K, Imanidis G, Reppas C, Kuentz M. Biphasic drug release testing coupled with diffusing wave spectroscopy for mechanistic understanding of solid dispersion performance. Eur J Pharm Sci 2019;137:105001.

    CAS  Google Scholar 

  54. Liu Z, Chen H, Lv F, Wang J, Zhao S, Li Y, Xue X, Liu Y, Wei G, Lu W. Sequential release of paclitaxel and imatinib from core-shell microparticles prepared by coaxial electrospray for vaginal therapy of cervical cancer. Int J Mol Sci 2021;22:8760.

    CAS  Google Scholar 

  55. Lau CML, Jahanmir G, Yu Y, Chau Y. Controllable multi-phase protein release from in-situ hydrolyzable hydrogel. J Control Release 2021;335:75–85.

    CAS  Google Scholar 

  56. Yu DG, Wang X, Li XY, Chian W, Li Y, Liao YZ. Electrospun biphasic drug release polyvinylpyrrolidone/ethyl cellulose core/sheath nanofibers. Acta Biomater 2013;9:5665–72.

    CAS  Google Scholar 

  57. Yang Y, Chang S, Bai Y, Du Y, Yu DG. Electrospun triaxial nanofifibers with middle blank cellulose acetate layers for accurate dual-stage drug release. Carbohydr Polym 2020;243:116477.

    CAS  Google Scholar 

  58. Liu X, Xu H, Zhang M, Yu DG. Electrospun medicated nanofibers for wound healing. Rev Membr 2021;11:770.

    CAS  Google Scholar 

  59. Mckee M, Layman J, Cashion M, Long T. Phospholipid non-woven electrospun membranes. Science 2006;311:353–5.

    CAS  Google Scholar 

  60. Quan Z, Wang Y, Zu Y, Qin X, Yu J. A rotary spinneret for high output of electrospun fibers with bimodal distribution. Eur Polym J 2021;159:110707.

    CAS  Google Scholar 

  61. Moghe A, Gupta B. Co-axial electrospinning for nanofifiber structures: preparation and applications. Polym Rev 2008;48:353–77.

    CAS  Google Scholar 

  62. Xu H, Xu X, Li S, Song WL, Yu DG, Annie Bligh SW. The effect of drug heterogeneous distributions within core-sheath nanostructures on its sustained release profiles. Biomolecules 2021;11:1330.

    CAS  Google Scholar 

  63. Liu Y, Chen X, Yu DG, Liu H, Liu Y, Liu P. Electrospun PVP-core/PHBV-shell nanofibers to eliminate tailing off for an improved sustained release of curcumin. Mol Pharm 2021. https://doi.org/10.1021/acs.molpharmaceut.1c00559 .

    Article  Google Scholar 

  64. Wang XX, Yu GF, Zhang J, Yu M, Ramakrishna S, Long YZ. Conductive polymer ultrafine fibers via electrospinning: preparation, physical properties and applications. Prog Mater Sci 2020;115:100704.

    Google Scholar 

  65. Peppas N. Analysis of Fickian and non-Fickian drug release from polymers. Pharm Acta Helv 1985;60:110–1.

    CAS  Google Scholar 

Download references

Acknowledgements

The study is financially supported by the Medical-Engineering Cross Project between University of Shanghai for Science & Technology and Navy Military Medical University (No. 2020201), the Natural Science Foundation of Shanghai (No.20ZR1439000), the National Natural Science Foundation of China (No. 51803121), and Projects 2019-YH-15 and 21QNPY062.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruiliang Ge or Deng-Guang Yu.

Ethics declarations

Conflict of interest

The authors declare no conflicts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, H., Wu, M., Zhu, J. et al. Engineered Spindles of Little Molecules Around Electrospun Nanofibers for Biphasic Drug Release. Adv. Fiber Mater. 4, 305–317 (2022). https://doi.org/10.1007/s42765-021-00112-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-021-00112-9

Keywords

Navigation