Skip to main content

Advertisement

Log in

Green Fabrication of Multifunctional Three-Dimensional Superabsorbent Nonwovens with Thermo-Bonding Fibers

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Disposable hygiene products have evolved into the important parts for millions of people around the world, enhancing the convenience of daily lives. However, development of the disposable hygiene products is restricted by unsustainable production technology, complicated operation process, and poor liquid absorption performance of the absorbent core. Herein, integrated and three-dimensional (3D) multifunctional superabsorbent nonwovens with liquid-triggered fragrance release was prepared via green, fast and scalable multi effect hot-air anchoring method which physically crosslinking the joint thermo-bonding fibers and anchoring fragrance microcapsules/super absorbent polymer (SAP) onto adjacent thermo-bonding fibers simultaneously. The resulting composite nonwovens could three-dimensionally absorb water 33.14 times of its own weight without gel blockage between SAP, and correspondingly release increased intensity fragrance along with enhancing amount of water absorption. Absorption rate t1 and t2 is 83.62% and 50.62% higher than the commercial specimen respectively, and the air permeability is increased by 226.88% compared with the commercial specimen. The superabsorbent nonwovens with controllable fragrance release and odorant synergistic has the potential to be practically applied to functional textiles fields because of the excellent liquid absorption and controlled fragrance release performance, and is easy to be produced on a sustainable, pollution-free and large-scale industrial production.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Baker N, Naidu K. The challenges faced by mental health care users in a primary care setting: a qualitative study. Community Ment Health J. 2021;57:285.

    Article  Google Scholar 

  2. Ma GC, Ward JE. Location and primary health care reform. Med J Aust. 2020;213:111.

    Article  Google Scholar 

  3. Pond CD, Regan C. Improving the delivery of primary care for older people. Med J Aust. 2019;211:60.

    Article  Google Scholar 

  4. Dong Y, Zheng Y, Zhang K, Yao Y, Wang L, Li X, Yu J, Ding B. Electrospun nanofibrous materials for wound healing. Advanced Fiber Materials. 2020;2:212.

    Article  CAS  Google Scholar 

  5. Xiao G, He J, Qiao Y, Wang F, Xia Q, Wang X, Yu L, Lu Z, Li C-M. Facile and low-cost fabrication of a thread/paper-based wearable system for simultaneous detection of lactate and pH in human sweat. Advanced Fiber Materials. 2020;2:265.

    Article  CAS  Google Scholar 

  6. Yang L, Liu H, Ding S, Wu J, Zhang Y, Wang Z, Wei L, Tian M, Tao G. Superabsorbent fibers for comfortable disposable medical protective clothing. Advanced Fiber Materials. 2020;2:140.

    Article  CAS  Google Scholar 

  7. Carr AN, DeWitt T, Cork MJ, Eichenfield LF, Folster-Holst R, Hohl D, Lane AT, Paller A, Pickering L, Taieb A, Cui TY, Xu ZG, Wang X, Brink S, Niu Y, Ogle J, Odio M, Gibb RD. Diaper dermatitis prevalence and severity: global perspective on the impact of caregiver behavior. Pediatr Dermatol.2020;37:130.

    Article  Google Scholar 

  8. Clark-Greuel JN, Helmes CT, Lawrence A, Odio M, White JC. Setting the record straight on diaper rash and disposable diapers. Clin Pediatr (Phila). 2014;53:23S.

    Article  Google Scholar 

  9. Rai P, Lee BM, Liu TY, Yuhui Q, Krause E, Marsman DS, Felter S. Safety evaluation of disposable baby diapers using principles of quantitative risk assessment. J Toxicol Environ Health A. 2009;72:1262.

    Article  CAS  Google Scholar 

  10. Bae J, Kwon H, Kim J. Safety evaluation of absorbent hygiene pads: a review on assessment framework and test methods. Sustainability. 2018;10:4146.

    Article  CAS  Google Scholar 

  11. Gao CJ, Kannan K. Phthalates, bisphenols, parabens, and triclocarban in feminine hygiene products from the United States and their implications for human exposure. Environ Int. 2020; 136: 105465.

  12. Hait A, Powers SE. The value of reusable feminine hygiene products evaluated by comparative environmental life cycle assessment. Resources, Conservation and Recycling. 2019; 150: 104422.

  13. Gray M, Kent D, Ermer-Seltun J, McNichol L. Assessment, selection, use, and evaluation of body-worn absorbent products for adults with incontinence: a WOCN society consensus conference. J Wound Ostomy Continence Nurs. 2018;45:243.

    Article  Google Scholar 

  14. Kinn AC, Zaar A. Quality of life and urinary incontinence pad use in women. Int Urogynecol J Pelvic Floor Dysfunct. 1998;9:83.

    Article  CAS  Google Scholar 

  15. Lu T, Cui J, Qu Q, Wang Y, Zhang J, Xiong R, Ma W, Huang C. Multistructured electrospun nanofibers for air filtration: a review. ACS Appl Mater Interfaces. 2021;13:23293.

    Article  CAS  Google Scholar 

  16. Lu T, Deng Y, Cui J, Cao W, Qu Q, Wang Y, Xiong R, Ma W, Lei J, Huang C. Multifunctional applications of blow-spinning Setaria viridis structured fibrous membranes in water purification. ACS Appl Mater Interfaces. 2021;13:22874.

    Article  CAS  Google Scholar 

  17. Zhang M, Cui J, Lu T, Tang G, Wu S, Ma W, Huang C. Robust, functionalized reduced graphene-based nanofibrous membrane for contaminated water purification. Chemical Engineering Journal. 2021; 404.

  18. Zhang M, Ma W, Cui J, Wu S, Han J, Zou Y, Huang C. Hydrothermal synthesized UV-resistance and transparent coating composited superoloephilic electrospun membrane for high efficiency oily wastewater treatment. J Hazard Mater. 2020; 383: 121152.

  19. Bezerra FM, Carmona OG, Carmona CG, Lis MJ, de Moraes FF. Controlled release of microencapsulated citronella essential oil on cotton and polyester matrices. Cellulose. 2016;23:1459.

    Article  CAS  Google Scholar 

  20. Bonet Aracil MÁ, Monllor P, Capablanca L, Gisbert J, Díaz P, Montava I. A comparison between padding and bath exhaustion to apply microcapsules onto cotton. Cellulose. 2015;22:2117.

    Article  CAS  Google Scholar 

  21. Ghayempour S, Montazer M. Herbal products on cellulosic fabric with controlled release: comparison of in situ encapsulation and UV curing of the prepared nanocapsules. Cellulose. 2017;24:4033.

    Article  CAS  Google Scholar 

  22. Ghayempour S, Montazer M, Mahmoudi Rad M. Simultaneous encapsulation and stabilization of Aloe vera extract on cotton fabric for wound dressing application. RSC Advances. 2016; 6: 111895.

  23. Golja B, Šumiga B, Forte TP. Fragrant finishing of cotton with microcapsules: comparison between printing and impregnation. Color Technol. 2013;129:338.

    Article  CAS  Google Scholar 

  24. Sánchez P, Sánchez-Fernandez MV, Romero A, Rodríguez JF, Sánchez-Silva L. Development of thermo-regulating textiles using paraffin wax microcapsules. Thermochim Acta. 2010;498:16.

    Article  Google Scholar 

  25. Petrulyte S, Vankeviciute D, Petrulis D. Characterization of structure and air permeability of aromatherapic terry textile. Int J Clothing Sci Technol. 2016;28:2.

    Article  Google Scholar 

  26. Zhang T, Luo Y, Wang M, Chen F, Liu J, Meng K, Zhao H. Double-layered microcapsules significantly improve the long-term effectiveness of essential oil. Polymers (Basel). 2020;12:1651.

    Article  CAS  Google Scholar 

  27. Ghayempour S, Montazer M. Tragacanth nanocapsules containing Chamomile extract prepared through sono-assisted W/O/W microemulsion and UV cured on cotton fabric. Carbohydr Polym. 2017;170:234.

    Article  CAS  Google Scholar 

  28. Ben Abdelkader M, Azizi N, Baffoun A, Chevalier Y, Majdoub M. Fragrant microcapsules based On β-cyclodextrin for cosmetotextile application. J Renewable Materials.2019;7:1347.

    Article  CAS  Google Scholar 

  29. Kudligi SJ, Malligawad LH, Naikwadi S, Jamadar D. Antimicrobial and aroma finishing of organic cotton knits using natural colourants and Palmarosa oil microcapsules. Flavour Fragr J. 2019;35:59.

    Article  Google Scholar 

  30. Rossi W, Bonet-Aracil M, Bou-Belda E, Gisbert-Payá J, Wilson K, Roldo L. Characterization of orange oil microcapsules for application in textiles. IOP Conference Series: Materials Science and Engineering. 2017; 254: 022007.

  31. Sharkawy A, Fernandes IP, Barreiro MF, Rodrigues AE, Shoeib T. Aroma-loaded microcapsules with antibacterial activity for eco-friendly textile application: synthesis, characterization, release, and green grafting. Ind Eng Chem Res. 2017;56:5516.

    Article  CAS  Google Scholar 

  32. Chen K, Zhou J, Hu J, Zhang J, Heng T, Xu C, Wang X, Liu J, Yu K. Preparation of pH-responsive dual-compartmental microcapsules via pickering emulsion and their application in multifunctional textiles. ACS Appl Mater Interfaces. 2021;13:1234.

    Article  CAS  Google Scholar 

  33. Ghayempour S, Mortazavi SM. Microwave curing for applying polymeric nanocapsules containing essential oils on cotton fabric to produce antimicrobial and fragrant textiles. Cellulose. 2015;22:4065.

    Article  CAS  Google Scholar 

  34. Goncalves F, Ribeiro A, Silva C, Cavaco-Paulo A. Release of fragrances from cotton functionalized with carbohydrate-binding module proteins. ACS Appl Mater Interfaces. 2019;11:28499.

    Article  CAS  Google Scholar 

  35. Ma J, Xu W, Kou X, Niu Y, Xia Y, Wang Y, Tian G, Zhao Y, Ke Q. Green fabrication of control-released, washable, and nonadhesives aromatic-nanocapsules/cotton fabrics via electrostatic-adsorption/in situ immobilization. ACS Sustain Chem Eng. 2020;8:15258.

    Article  CAS  Google Scholar 

  36. Singh N, Yadav M, Khanna S, Sahu O. Sustainable fragrance cum antimicrobial finishing on cotton: indigenous essential oil. Sustain Chem Pharmacy. 2017;5:22.

    Article  CAS  Google Scholar 

  37. Dai Z, Su J, Zhu X, Xu K, Zhu J, Huang C, Ke Q. Multifunctional polyethylene (PE)/polypropylene (PP) bicomponent fiber filter with anchored nanocrystalline MnO2 for effective air purification. J Materials Chem A. 2018;6:14856.

    Article  CAS  Google Scholar 

  38. Gould S, Scott RC. 2-Hydroxypropyl-beta-cyclodextrin (HP-beta-CD): a toxicology review. Food Chem Toxicol. 2005;43:1451.

    Article  CAS  Google Scholar 

  39. Yao Y, Xie Y, Hong C, Li G, Shen H, Ji G. Development of a myricetin/hydroxypropyl-beta-cyclodextrin inclusion complex: preparation, characterization, and evaluation. Carbohydr Polym. 2014;110:329.

    Article  CAS  Google Scholar 

  40. Hu R, Liu Y, Shin S, Huang S, Ren X, Shu W, Cheng J, Tao G, Xu W, Chen R, Luo X. Emerging Materials and Strategies for Personal Thermal Management. Advanced Energy Materials. 2020; 10.

  41. Hu R, Xi W, Liu Y, Tang K, Song J, Luo X, Wu J, Qiu C-W. Thermal camouflaging metamaterials. Mater Today. 2021;45:120.

    Article  CAS  Google Scholar 

  42. Wu J, Hu R, Zeng S, Xi W, Huang S, Deng J, Tao G. Flexible and Robust Biomaterial Microstructured Colored Textiles for Personal Thermoregulation. ACS Appl Mater Interfaces. 2020;12:19015.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Capacity building project of local universities Science and Technology Commission of Shanghai Municipality(19090503500) , National Natural Science Foundation of China (51803028, 2018), Shanghai Gaofeng & Gaoyuan Project for University Academic Program Development, China Postdoctoral Science Foundation (2020M681125), DHU Distinguished Young Professor Program, the Fundamental Research Funds for the Central Universities, and the Fundamental Research Funds for the Central Universities and Graduate Student Innovation Fund of Donghua University (CUSF-DH-D-2021020).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qinfei Ke or Yi Zhao.

Ethics declarations

Conflicts of interest

The authors declare no competing financial interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 15559 KB)

Supplementary file2 (MP4 1373 KB)

Supplementary file3 (MP4 1308 KB)

Appendix A. Supplementary data

Appendix A. Supplementary data

Supplementary data related to this article can be found at.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Zhang, N., Cheng, Y. et al. Green Fabrication of Multifunctional Three-Dimensional Superabsorbent Nonwovens with Thermo-Bonding Fibers. Adv. Fiber Mater. 4, 293–304 (2022). https://doi.org/10.1007/s42765-021-00108-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-021-00108-5

Keywords

Navigation