Skip to main content
Log in

Quantitative Evaluation of Pseudo Strain Signals Caused by Yarn Structural Deformation

  • Letter
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Yarn-based strain sensors (YSSs) have shown great promising in the fabrication of wearable devices for their good comfortability and flexible designability. However, the false signals generated by the changes in the yarn structure of the YSSs are usually ignored. In this study, the generation, the characteristic, and the prediction of these signals were investigated. We recognized that these signals are composed of two negative pseudo peaks and a spurious resistance response plateau. These responses are found to have nothing in common with a true tensile strain, but be attributed to plastic deformation of the fibers. This is due to the fact that the deformation of YSSs exceeds the linear elastic range of the fibers. Although the use of pure elastic fibers can eliminate the spurious resistance response plateau, it will lead to an increase in the pseudo peak to the value compared with a true strain signal peak. Hence, a theoretical model was established to decouple the real signals from the false responses, ensuring the high sensing accuracy of YSSs for applications in wearable devices and artificial intelligence interfaces. This work provides an in-depth understanding of the response of the YSSs, which might provide inspiration and guidance in the design of high-accuracy fiber-based strain sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Seyedin S, Zhang P, Naebe M, Qin S, Chen J, Wang X, Razal JM. Textile strain sensors: a review of the fabrication technologies, performance evaluation and applications. Mater Horiz. 2019;6:219.

    Article  CAS  Google Scholar 

  2. Xie MY, Hisano K, Zhu MZ, Toyoshi T, Pan M, Okada S, Tsutsumi O, Kawamura S, Bowen C. Flexible multifunctional sensors for wearable and robotic applications. Adv Mater Technol. 2019;4:1800626.

    Article  Google Scholar 

  3. Zeng W, Shu L, Li Q, Chen S, Wang F, Tao XM. Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv Mater. 2014;26:5310.

    Article  CAS  Google Scholar 

  4. Tao X. Study of fiber-based wearable energy systems. Acc Chem Res. 2019;52:307.

    Article  CAS  Google Scholar 

  5. Lin S, Wang Z, Chen X, Ren J, Ling S. Ultrastrong and highly sensitive fiber microactuators constructed by force-reeled silks. Adv Sci (Weinh). 2020;7:1902743.

    Article  CAS  Google Scholar 

  6. Shi Q, Sun J, Hou C, Li Y, Zhang Q, Wang H. Advanced functional fiber and smart textile. Adv Fiber Mater. 2019;1:3.

    Article  Google Scholar 

  7. Ye C, Xu Q, Ren J, Ling S. Violin string inspired core-sheath silk/steel yarns for wearable triboelectric nanogenerator applications. Adv Fiber Mater. 2020;2:24.

    Article  CAS  Google Scholar 

  8. Xiong J, Chen J, Lee PS. Functional fibers and fabrics for soft robotics, wearables, and human-robot interface. Adv Mater. 2020;33:2002640.

    Article  Google Scholar 

  9. Wang C, Zhang M, Xia K, Gong X, Wang H, Yin Z, Guan B, Zhang Y. Intrinsically stretchable and conductive textile by a scalable process for elastic wearable electronics. ACS Appl Mater Interfaces. 2017;9:13331.

    Article  CAS  Google Scholar 

  10. Ye C, Ren J, Wang YL, Zhang WW, Qian C, Han J, Zhang CX, Jin K, Buehler MJ, Kaplan DL, Ling SJ. Design and fabrication of silk templated electronic yarns and applications in multifunctional textiles. Matter. 2019;1:1411.

    Article  Google Scholar 

  11. Sanchez V, Walsh CJ, Wood RJ. Textile technology for soft robotic and autonomous garments. Adv Funct Mater. 2021;31:2008278.

    Article  CAS  Google Scholar 

  12. Wang Y, Ren J, Ye C, Pei Y, Ling S. Thermochromic silks for temperature management and dynamic textile displays. Nanomicro Lett. 2021;13:72.

    Google Scholar 

  13. Andrew TL, Zhang L, Cheng N, Baima M, Kim JJ, Allison L, Hoxie S. Melding vapor-phase organic chemistry and textile manufacturing to produce wearable electronics. Acc Chem Res. 2018;51:850.

    Article  CAS  Google Scholar 

  14. Xue J, Xie J, Liu W, Xia Y. Electrospun nanofibers: new concepts, materials, and applications. Acc Chem Res. 1976;2017:50.

    Google Scholar 

  15. Li L, Bai Y, Li L, Wang S, Zhang T. A superhydrophobic smart coating for flexible and wearable sensing electronics. Adv Mater. 2017;29:1702517.

    Article  Google Scholar 

  16. Wang C, Xia K, Zhang Y, Kaplan DL. Silk-based advanced materials for soft electronics. Acc Chem Res. 2019;52:2916.

    Article  CAS  Google Scholar 

  17. Zhang LS, Liao M, Bao LK, Sun XM, Peng HS. The functionalization of miniature energy-storage devices. Small Methods. 2017;1:1700211.

    Article  Google Scholar 

  18. Weng W, Chen P, He S, Sun X, Peng H. Smart electronic textiles. Angew Chem Int Ed Engl. 2016;55:6140.

    Article  CAS  Google Scholar 

  19. Meng W, Nie M, Liu Z, Zhou J. Buckled fiber conductors with resistance stability under strain. Adv Fiber Mater. 2021;3:149.

    Article  Google Scholar 

  20. Sheng J, Xu Y, Yu J, Ding B. Robust fluorine-free superhydrophobic amino-silicone oil/SiO2 modification of electrospun polyacrylonitrile membranes for waterproof-breathable application. ACS Appl Mater Interfaces. 2017;9:15139.

    Article  CAS  Google Scholar 

  21. Zhang W, Ye C, Zheng K, Zhong J, Tang Y, Fan Y, Buehler MJ, Ling S, Kaplan DL. Tensan silk-inspired hierarchical fibers for smart textile applications. ACS Nano. 2018;12:6968.

    Article  CAS  Google Scholar 

  22. Huang ML, Si Y, Tang XM, Zhu ZG, Ding B, Liu LF, Zheng G, Luo WJ, Yu JY. Gravity driven separation of emulsified oil-water mixtures utilizing in situ polymerized superhydrophobic and superoleophilic nanofibrous membranes. J Mater Chem A. 2013;1:14071.

    Article  CAS  Google Scholar 

  23. Yang S, Li C, Chen X, Zhao Y, Zhang H, Wen N, Fan Z, Pan L. Facile fabrication of high-performance Pen Ink-decorated textile strain sensors for human motion detection. ACS Appl Mater Interfaces. 2020;12:19874.

    Article  CAS  Google Scholar 

  24. Hwang B, Lund A, Tian Y, Darabi S, Muller C. Machine-washable conductive silk yarns with a composite coating of Ag nanowires and PEDOT:PSS. ACS Appl Mater Interfaces. 2020;12:27537.

    Article  CAS  Google Scholar 

  25. Li J, Sun J, Wu D, Huang W, Zhu M, Reichmanis E, Yang S. Functionalization-directed stabilization of hydrogen-bonded polymer complex fibers: elasticity and conductivity. Adv Fiber Mater. 2019;1:71.

    Article  Google Scholar 

  26. Chen W, Liu LX, Zhang HB, Yu ZZ. Flexible, transparent, and conductive Ti3C2Tx MXene-silver nanowire films with smart acoustic sensitivity for high-performance electromagnetic interference shielding. ACS Nano. 2020;14:16643.

    Article  CAS  Google Scholar 

  27. Ge JL, Zong DD, Jin Q, Yu JY, Ding B. Biomimetic and superwettable nanofibrous skins for highly efficient separation of oil-in-water emulsions. Adv Funct Mater. 2018;28:1705051.

    Article  Google Scholar 

  28. Guan XY, Wang X, Huang YH, Zhao LH, Sun XT, Owens H, Lu JR, Liu XQ. Smart textiles with Janus wetting and wicking properties fabricated by graphene oxide coatings. Adv Mater Interfaces. 2021;8:2001427.

    Article  CAS  Google Scholar 

  29. Duan S, Zhang L, Wang Z, Li C. One-step rod coating of high-performance silver nanowire–PEDOT:PSS flexible electrodes with enhanced adhesion after sulfuric acid post-treatment. RSC Adv. 2015;5:95280.

    Article  CAS  Google Scholar 

  30. Moon IK, Kim JI, Lee H, Hur K, Kim WC, Lee H. 2D Graphene oxide nanosheets as an adhesive over-coating layer for flexible transparent conductive electrodes. Sci Rep. 2013;3:1112.

    Article  Google Scholar 

  31. Zhang M, Wang C, Wang Q, Jian M, Zhang Y. Sheath-core graphite/silk fiber made by dry-meyer-rod-coating for wearable strain sensors. ACS Appl Mater Interfaces. 2016;8:20894.

    Article  CAS  Google Scholar 

  32. Jo HS, Kwon HJ, Kim TG, Park CW, An S, Yarin AL, Yoon SS. Wearable transparent thermal sensors and heaters based on metal-plated fibers and nanowires. Nanoscale. 2018;10:19825.

    Article  CAS  Google Scholar 

  33. Lu W, Yu P, Jian M, Wang H, Wang H, Liang X, Zhang Y. Molybdenum Disulfide nanosheets aligned vertically on carbonized silk fabric as smart textile for wearable pressure-sensing and energy devices. ACS Appl Mater Interfaces. 2020;12:11825.

    Article  CAS  Google Scholar 

  34. Elsayed EM, Attia NF, Alshehri LA. Innovative flame retardant and antibacterial fabrics coating based on inorganic nanotubes. ChemistrySelect. 2020;5:2961.

    Article  CAS  Google Scholar 

  35. Deng J, Xu Y, He S, Chen P, Bao L, Hu Y, Wang B, Sun X, Peng H. Preparation of biomimetic hierarchically helical fiber actuators from carbon nanotubes. Nat Protoc. 2017;12:1349.

    Article  CAS  Google Scholar 

  36. Laforgue A, Robitaille L. Production of conductive PEDOT nanofibers by the combination of electrospinning and vapor-phase polymerization. Macromolecules. 2010;43:4194.

    Article  CAS  Google Scholar 

  37. Park JJ, Hyun WJ, Mun SC, Park YT, Park OO. Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoring. ACS Appl Mater Interfaces. 2015;7:6317.

    Article  CAS  Google Scholar 

  38. Liu ZF, Fang S, Moura FA, Ding JN, Jiang N, Di J, Zhang M, Lepró X, Galvão DS, Haines CS, Yuan NY, Yin SG, Lee DW, Wang R, Wang HY, Lv W, Dong C, Zhang RC, Chen MJ, Yin Q, Chong YT, Zhang R, Wang X, Lima MD, Ovalle-Robles R, Qian D, Lu H, Baughman RH. Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles. Science. 2015;349:400.

    Article  CAS  Google Scholar 

  39. Ye C, Dong S, Ren J, Ling S. Ultrastable and high-performance silk energy harvesting textiles. Nano Micro Lett. 2019;12:12.

    Article  Google Scholar 

  40. Wang C, Xie N-H, Zhang Y, Huang Z, Xia K, Wang H, Guo S, Xu B-Q, Zhang Y. Silk-derived highly active oxygen electrocatalysts for flexible and rechargeable Zn–Air batteries. Chem Mater. 2019;31:1023.

    Article  CAS  Google Scholar 

  41. Yu X, Pan J, Zhang J, Sun H, He S, Qiu L, Lou H, Sun X, Peng H. A coaxial triboelectric nanogenerator fiber for energy harvesting and sensing under deformation. J Mater Chem A. 2017;5:6032.

    Article  CAS  Google Scholar 

  42. Lin S, Ye C, Zhang W, Xu A, Chen S, Ren J, Ling S. Nanofibril organization in silk fiber as inspiration for ductile and damage-tolerant fiber design. Adv Fiber Mater. 2019;1:231.

    Article  Google Scholar 

  43. Pan L, Wang F, Cheng Y, Leow WR, Zhang YW, Wang M, Cai P, Ji B, Li D, Chen X. A supertough electro-tendon based on spider silk composites. Nat Commun. 2020;11:1332.

    Article  CAS  Google Scholar 

  44. Wang C, Xia K, Wang H, Liang X, Yin Z, Zhang Y. Advanced Carbon for Flexible and Wearable Electronics. Adv Mater. 2019;31:e1801072.

    Article  Google Scholar 

  45. Liang A, Stewart R, Bryan-Kinns N. Analysis of sensitivity, linearity, hysteresis, responsiveness, and fatigue of textile knit stretch sensors. Sensors (Basel). 2019;19:3618.

    Article  CAS  Google Scholar 

  46. Lee J, Kwon H, Seo J, Shin S, Koo JH, Pang C, Son S, Kim JH, Jang YH, Kim DE, Lee T. Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics. Adv Mater. 2015;27:2433.

    Article  CAS  Google Scholar 

  47. Zhong W, Liu C, Xiang C, Jin Y, Li M, Liu K, Liu Q, Wang Y, Sun G, Wang D. Continuously producible ultrasensitive wearable strain sensor assembled with three-dimensional interpenetrating Ag nanowires/polyolefin elastomer nanofibrous composite Yarn. ACS Appl Mater Interfaces. 2017;9:42058.

    Article  CAS  Google Scholar 

  48. Luo Z, Hu X, Tian X, Luo C, Xu H, Li Q, Li Q, Zhang J, Qiao F, Wu X, Borisenko VE, Chu J. Structure-property relationships in graphene-based strain and pressure sensors for potential artificial intelligence applications. Sensors (Basel). 2019;19:1250.

    Article  CAS  Google Scholar 

  49. Khromov KY, Knizhnik AA, Potapkin BV, Kenny JM. Multiscale modeling of electrical conductivity of carbon nanotubes based polymer nanocomposites. J Appl Phys. 2017;121:225102.

    Article  Google Scholar 

  50. Hu N, Karube Y, Yan C, Masuda Z, Fukunaga H. Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor. Acta Mater. 2008;56:2929.

    Article  CAS  Google Scholar 

  51. Hu N, Karube Y, Fukunaga H, editors. A strain sensor from a polymer/carbon nanotube nanocomposite. Dordrecht: Springer; 2010.

  52. Holm R. Electric contacts: theory and applications. Berlin, Heidelberg: Springer; 1967.

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51973116, U1832109, 21935002, 52003156), the Users with Excellence Program of Hefei Science Center CAS (2019HSC-UE003), China Postdoctoral Science Foundation (2020M681344), the starting grant of ShanghaiTech University, and State Key Laboratory for Modification of Chemical Fibers and Polymer Materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengjie Ling.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 857 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, S., Cao, L., Lv, Z. et al. Quantitative Evaluation of Pseudo Strain Signals Caused by Yarn Structural Deformation. Adv. Fiber Mater. 4, 214–225 (2022). https://doi.org/10.1007/s42765-021-00101-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-021-00101-y

Keywords

Navigation