Skip to main content
Log in

Optical Microfiber Neuron for Finger Motion Perception

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

To achieve dexterous motion controlling of robot, the sensors that function like human neurons for motion perception are essential. In this work, a silica microfiber probe-based optical neuron (MPON) for robot finger motion detection is proposed. The silica microfiber probe was fabricated by snapping a biconical silica optical microfiber that drawn from the standard optical fibre. Then it was embedded into thin polydimethylsiloxane (PDMS) to detect and recognize motions of robotic finger. Specifically, a PDMS-Teflon-Microfiber-Teflon-PDMS composite structure was prepared to protect the waveguide structure of silica microfiber probe and avoid the environmental pollution. With the help of this composite structure, the proposed MPON achieved the accurate measurement of bending angle with large range and fast response. The repeatability and stability of MPON were also investigated. Additionally, different finger motions were successfully distinguished through observing the output power variation of MPON. The proposed MPON could serve as the perceptron of robot hand, which could be applied in dexterous gesture control even human machine interaction.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dollar AM, Howe RD. The highly adaptive SDM hand: design and performance evaluation. Int J Robot Res. 2010;29:585.

    Article  Google Scholar 

  2. Rothling F, Haschke R, Steil JJ, Ritter H. Platform portable anthropomorphic grasping with the bielefeld 20-DOF shadow and 9-DOF TUM hand. In: Intelligent robots and systems; 2007. p. 2951–56.

  3. Han H, Yoon SW. Gyroscope-based continuous human hand gesture recognition for multi-modal wearable input device for human machine interaction. Sensors. 2019;19:2562.

    Article  Google Scholar 

  4. Park I. Recent trends in human motion detection technology and flexible/stretchable physical sensors: a review. J Sens Sci Technol. 2017;26:391.

    Google Scholar 

  5. Amjadi M, Kyung KU, Park I, Sitti M. Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv Funct Mater. 2016;26:1678.

    Article  CAS  Google Scholar 

  6. Homayounfar SZ, Andrew TL. Wearable sensors for monitoring human motion: a review on mechanisms, materials, and challenges. SLAS Technol Transl Life Sci Innov. 2019;25: 2472630319891128.

    Google Scholar 

  7. Sim K, Rao Z, Zou Z, Ershad F, Lei J, Thukral A, Chen J, Huang Q, Xiao J, Yu C. Metal oxide semiconductor nanomembrane–based soft unnoticeable multifunctional electronics for wearable human-machine interfaces. Sci Adv. 2019;5: eaav9653.

    Article  CAS  Google Scholar 

  8. Kim MS, Kim K, Kwon D, Kim S, Gu J, Oh YS, Park I. Microdome-induced strain localization for biaxial strain decoupling toward stretchable and wearable human motion detection. Langmuir. 2020;36:8939.

    Article  CAS  Google Scholar 

  9. Chen T, Shi Q, Zhu M, He T, Sun L, Yang L, Lee C. Triboelectric self-powered wearable flexible patch as 3D motion control interface for robotic manipulator. ACS Nano. 2018;12:11561.

    Article  CAS  Google Scholar 

  10. Mannsfeld SCB, Tee CK, Stoltenberg RM, Chen HH, Barman S, Muir BVO, Sokolov AN, Reese C, Bao Z. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat Mater. 2010;9:859.

    Article  CAS  Google Scholar 

  11. Muth JT, Vogt DM, Truby RL, Mengüç Y, Kolesky DB, Wood RJ, Lewis JA. Embedded 3D printing of strain sensors within highly stretchable elastomers. Adv Mater. 2014;26:6307.

    Article  CAS  Google Scholar 

  12. Yamada T, Hayamizu Y, Yamamoto Y, Yomogida Y, Izadi-Najafabadi A, Futaba DN, Hata K. A stretchable carbon nanotube strain sensor for human-motion detection. Nat Nanotechnol. 2011;6:296.

    Article  CAS  Google Scholar 

  13. Amjadi M, Pichitpajongkit A, Lee S, Ryu S, Park I. Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano. 2014;8:5154.

    Article  CAS  Google Scholar 

  14. Park Y, Chau KK, Black RJ, Cutkosky MR. Force sensing robot fingers using embedded fiber bragg grating sensors and shape deposition manufacturing. In: International conference on robotics and automation; 2007. p. 1510–6.

  15. Van Meerbeek IM, De Sa CM, Shepherd RF. Soft optoelectronic sensory foams with proprioception. Sci Robot. 2018;3:eaau2489.

    Article  Google Scholar 

  16. Heo JS, Kim JY, Lee JJ. Tactile sensors using the distributed optical fiber sensors. In: 3rd international conference on sensing technology. 2008. p. 486–90.

  17. Xu PA, Mishra AK, Bai H, Aubin CA, Zullo L, Shepherd RF. Optical lace for synthetic afferent neural networks. Sci Robot. 2019;4: eaaw6304.

    Article  Google Scholar 

  18. Zhao H, O’Brien K, Li S, Shepherd RF. Optoelectronically innervated soft prosthetic hand via stretchable optical waveguides. Sci Robot. 2016;1: eaai7529.

    Article  Google Scholar 

  19. Leber A, Cholst B, Sandt J, Vogel N, Kolle M. Stretchable optical fibers: stretchable thermoplastic elastomer optical fibers for sensing of extreme deformations. Adv Funct Mater. 2019;29: 1970030.

    Article  Google Scholar 

  20. Guo J, Niu M, Yang C. Highly flexible and stretchable optical strain sensing for human motion detection. Optica. 2017;4:1285.

    Article  Google Scholar 

  21. Zhang J, Cao Y, Qiao M, Ai L, Sun K, Mi Q, Zang S, Zuo Y, Yuan X, Wang Q. Human motion monitoring in sports using wearable graphene-coated fiber sensors. Sens Actuators A. 2018;274:132.

    Article  CAS  Google Scholar 

  22. Guo J, Zhou B, Zong R, Pan L, Li X, Yu X, Yang C, Kong L, Dai Q. Stretchable and highly sensitive optical strain sensors for human-activity monitoring and healthcare. ACS Appl Mater Interfaces. 2019;11:33589.

    Article  CAS  Google Scholar 

  23. Bai H, Li S, Barreiros J, Tu Y, Pollock CR, Shepherd RF. Stretchable distributed fiber-optic sensors. Science. 2020;370:848.

    Article  CAS  Google Scholar 

  24. Tong L. Micro/nanofibre optical sensors: challenges and prospects. Sensors. 2018;18:903.

    Article  Google Scholar 

  25. Tong L, Zi F, Guo X, Lou J. Optical microfibers and nanofibers: a tutorial. Opt Commun. 2012;285:4641.

    Article  CAS  Google Scholar 

  26. Pan J, Zhang Z, Jiang C, Zhang L, Tong L. A multifunctional skin-like wearable optical sensor based on an optical micro-/nanofibre. Nanoscale. 2020;12:17538.

    Article  CAS  Google Scholar 

  27. Zhang L, Pan J, Zhang Z, Wu H, Yao N, Cai D, Xu Y, Zhang J, Sun G, Wang L. Ultrasensitive skin-like wearable optical sensors based on glass micro/nanofibers. Opto Electron Adv. 2020;003:18.

    Google Scholar 

  28. Jiang C, Zhang Z, Pan J, Wang Y, Zhang L, Tong L. Finger-skin-inspired flexible optical sensor for force sensing and slip detection in robotic grasping. Adv Mater Technol. https://doi.org/10.1002/admt.202100285.

    Article  Google Scholar 

  29. Li Y, Fang F, Yang L, Tan S, Yan Z, Sun Q. In-situ DNA hybridization detection based on a reflective microfiber probe. Opt Express. 2020;28:970.

    Article  CAS  Google Scholar 

  30. Sumetsky M, Dulashko Y, Hale A. Fabrication and study of bent and coiled free silica nanowires: self-coupling microloop optical interferometer. Opt Express. 2004;12:3521.

    Article  CAS  Google Scholar 

  31. Snyder AW, Love J. Optical waveguide theory. Springer; 2012.

    Google Scholar 

  32. Yu H, Wang S, Fu J, Qiu M, Li Y, Gu F, Tong L. Modeling bending losses of optical nanofibers or nanowires. Appl Opt. 2009;48:4365.

    Article  Google Scholar 

  33. Wang J, Ai F, Sun Q, Liu T, Li H, Yan Z, Liu D. Diaphragm-based optical fiber sensor array for multipoint acoustic detection. Opt Express. 2018;26:25293.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (Grant Number: 61922033 and 61775072) and the Innovation Fund of Wuhan National Laboratory for Optoelectronics (WNLO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qizhen Sun.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1187 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Tan, S., Yang, L. et al. Optical Microfiber Neuron for Finger Motion Perception. Adv. Fiber Mater. 4, 226–234 (2022). https://doi.org/10.1007/s42765-021-00096-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-021-00096-6

Keywords

Navigation