Adar, S., Hu, J., Lieb, J. D., & Sancar, A. (2016). Genome-wide kinetics of DNA excision repair in relation to chromatin state and mutagenesis. Proceedings of the National Academy of Sciences of the United States of America, 113(15), E2124–2133. https://doi.org/10.1073/pnas.1603388113.
CAS
Article
PubMed
PubMed Central
Google Scholar
Akagi, J. I., et al. (2019). Effect of sequence context on Polzeta-dependent error-prone extension past (6–4) photoproducts. DNA Repair (Amsterdam), 87, 102771. https://doi.org/10.1016/j.dnarep.2019.102771.
CAS
Article
Google Scholar
Albert, A., Knoll, M. A., Conti, J. A., & Zbar, R. I. S. (2019). Non-melanoma skin cancers in the older patient. Current Oncology Reports, 21(9), 79. https://doi.org/10.1007/s11912-019-0828-9.
Article
PubMed
Google Scholar
Araujo, S. J., & Kuraoka, I. (2019). Nucleotide excision repair genes shaping embryonic development. Open Biology, 9(10), 190166. https://doi.org/10.1098/rsob.190166.
CAS
Article
PubMed
PubMed Central
Google Scholar
Autier, P., et al. (1994). Cutaneous malignant melanoma and exposure to sunlamps or sunbeds: An EORTC multicenter case–control study in Belgium, France and Germany. EORTC Melanoma Cooperative Group. International Journal of Cancer, 58, 809–813.
CAS
PubMed
Article
Google Scholar
Banerjee, S. K., Christensen, R. B., Lawrence, C. W., & LeClerc, J. E. (1988). Frequency and spectrum of mutations produced by a single cis-syn thymine–thymine cyclobutane dimer in a single-stranded vector. Proceedings of the National Academy of Sciences of the United States of America, 85, 8141–8145.
CAS
PubMed
PubMed Central
Article
Google Scholar
Banyasz, A., et al. (2016). Effect of C5-methylation of cytosine on the UV-induced reactivity of duplex DNA: Conformational and electronic factors. The Journal of Physical Chemistry B, 120(18), 4232–4242. https://doi.org/10.1021/acs.jpcb.6b03340.
CAS
Article
PubMed
Google Scholar
Besaratinia, A., & Pfeifer, G. P. (2008). Sunlight ultraviolet irradiation and BRAF V600 mutagenesis in human melanoma. Human Mutation, 29(8), 983–991.
CAS
PubMed
Article
Google Scholar
Besaratinia, A., & Pfeifer, G. P. (2011). Uveal melanoma and GNA11 mutations: A new piece added to the puzzle. Pigment Cell & Melanoma Research, 24(1), 18–20. https://doi.org/10.1111/j.1755-148X.2010.00821.x.
CAS
Article
Google Scholar
Besaratinia, A., et al. (2005). DNA lesions induced by UV A1 and B radiation in human cells: Comparative analyses in the overall genome and in the p53 tumor suppressor gene. Proceedings of the National Academy of Sciences of the United States of America, 102(29), 10058–10063.
CAS
PubMed
PubMed Central
Article
Google Scholar
Besaratinia, A., Yoon, J. I., Schroeder, C., Bradforth, S. E., Cockburn, M., & Pfeifer, G. P. (2011). Wavelength dependence of ultraviolet radiation-induced DNA damage as determined by laser irradiation suggests that cyclobutane pyrimidine dimers are the principal DNA lesions produced by terrestrial sunlight. The FASEB Journal, 25, 3079–3091.
CAS
PubMed
PubMed Central
Article
Google Scholar
Beukers, R., Eker, A. P., & Lohman, P. H. (2008). 50 years thymine dimer. DNA Repair (Amsterdam), 7(3), 530–543. https://doi.org/10.1016/j.dnarep.2007.11.010.
CAS
Article
Google Scholar
Bonilla, X., et al. (2016). Genomic analysis identifies new drivers and progression pathways in skin basal cell carcinoma. Nature Genetics, 48(4), 398–406. https://doi.org/10.1038/ng.3525.
CAS
Article
PubMed
Google Scholar
Brash, D. E., et al. (1991). A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 88(22), 10124–10128. https://doi.org/10.1073/pnas.88.22.10124.
CAS
Article
PubMed
PubMed Central
Google Scholar
Brown, A. J., Mao, P., Smerdon, M. J., Wyrick, J. J., & Roberts, S. A. (2018). Nucleosome positions establish an extended mutation signature in melanoma. PLOS Genetics, 14(11), e1007823. https://doi.org/10.1371/journal.pgen.1007823.
CAS
Article
PubMed
PubMed Central
Google Scholar
Busuttil, R. A., Lin, Q., Stambrook, P. J., Kucherlapati, R., & Vijg, J. (2008). Mutation frequencies and spectra in DNA polymerase eta-deficient mice. Cancer Research, 68(7), 2081–2084. https://doi.org/10.1158/0008-5472.CAN-07-6274.
CAS
Article
PubMed
Google Scholar
Cadet, J., et al. (1997). Effects of UV and visible radiation on DNA-final base damage. Journal of Biological Chemistry, 378(11), 1275–1286.
CAS
Google Scholar
Cadet, J., Douki, T., & Ravanat, J. L. (2015). Oxidatively generated damage to cellular DNA by UVB and UVA radiation. Photochemistry and Photobiology, 91(1), 140–155. https://doi.org/10.1111/php.12368.
CAS
Article
PubMed
Google Scholar
Cadet, J., Mouret, S., Ravanat, J. L., & Douki, T. (2012). Photoinduced damage to cellular DNA: Direct and photosensitized reactions. Photochemistry and Photobiology, 88(5), 1048–1065. https://doi.org/10.1111/j.1751-1097.2012.01200.x.
CAS
Article
PubMed
Google Scholar
Cannistraro, V. J., Pondugula, S., Song, Q., & Taylor, J. S. (2015). Rapid deamination of cyclobutane pyrimidine dimer photoproducts at TCG sites in a translationally and rotationally positioned nucleosome in vivo. Journal of Biological Chemistry, 290(44), 26597–26609. https://doi.org/10.1074/jbc.M115.673301.
CAS
Article
PubMed
PubMed Central
Google Scholar
Carr, S., Smith, C., & Wernberg, J. (2020). Epidemiology and risk factors of melanoma. Surgical Clinics of North America, 100(1), 1–12. https://doi.org/10.1016/j.suc.2019.09.005.
Article
PubMed
Google Scholar
Choi, J. H., & Pfeifer, G. P. (2005). The role of DNA polymerase eta in UV mutational spectra. DNA Repair (Amsterdam), 4(2), 211–220.
CAS
Article
Google Scholar
Cleaver, J. E. (1969). Xeroderma pigmentosum: A human disease in which an initial stage of DNA repair is defective. Proceedings of the National Academy of Sciences of the United States of America, 63(2), 428–435. https://doi.org/10.1073/pnas.63.2.428.
CAS
Article
PubMed
PubMed Central
Google Scholar
De Fabo, E. C., Noonan, F. P., Fears, T., & Merlino, G. (2004). Ultraviolet B but not ultraviolet A radiation initiates melanoma. Cancer Research, 64(18), 6372–6376.
PubMed
Article
Google Scholar
de Gruijl, F. R. (2002). Photocarcinogenesis: UVA vs. UVB radiation. Skin Pharmacology and Physiology, 15, 316–320.
Article
Google Scholar
de Gruijl, F. R., et al. (1993). Wavelength dependence of skin cancer induction by ultraviolet irradiation of albino hairless mice. Cancer Research, 53, 53–60.
PubMed
Google Scholar
de Laat, A., van der Leun, J. C., & de Gruijl, F. R. (1997). Carcinogenesis induced by UVA (365-nm) radiation: The dose-time dependence of tumor formation in hairless mice. Carcinogenesis, 18, 1013–1020.
PubMed
Article
Google Scholar
Dimitriou, F., et al. (2018). The world of melanoma: Epidemiologic, genetic, and anatomic differences of melanoma across the globe. Current Oncology Reports, 20(11), 87. https://doi.org/10.1007/s11912-018-0732-8.
Article
PubMed
Google Scholar
Donaldson, M. R. & B. M. Coldiron (2011). No end in sight: The skin cancer epidemic continues. Seminars in Cutaneous Medicine and Surgery 30(1): 3-5. S1085-5629(11)00013-7 [pii] https://doi.org/10.1016/j.sder.2011.01.002
Douki, T., Reynaud-Angelin, A., Cadet, J., & Sage, E. (2003). Bipyrimidine photoproducts rather than oxidative lesions are the main type of DNA damage involved in the genotoxic effect of solar UVA radiation. Biochemistry, 42(30), 9221–9226. https://doi.org/10.1021/bi034593c.
CAS
Article
PubMed
Google Scholar
Douki, T., & Sage, E. (2016). Dewar valence isomers, the third type of environmentally relevant DNA photoproducts induced by solar radiation. Photochemical and Photobiological Sciences, 15(1), 24–30. https://doi.org/10.1039/c5pp00382b.
CAS
Article
PubMed
Google Scholar
Durinck, S., et al. (2011). Temporal dissection of tumorigenesis in primary cancers. Cancer Discovery, 1(2), 137–143. https://doi.org/10.1158/2159-8290.CD-11-0028.
CAS
Article
PubMed
PubMed Central
Google Scholar
Elliott, K., et al. (2018). Elevated pyrimidine dimer formation at distinct genomic bases underlies promoter mutation hotspots in UV-exposed cancers. PLOS Genetics, 14(12), e1007849. https://doi.org/10.1371/journal.pgen.1007849.
CAS
Article
PubMed
PubMed Central
Google Scholar
Fredriksson, N. J., Elliott, K., Filges, S., Van den Eynden, J., Stahlberg, A., & Larsson, E. (2017). Recurrent promoter mutations in melanoma are defined by an extended context-specific mutational signature. PLOS Genetics, 13(5), e1006773. https://doi.org/10.1371/journal.pgen.1006773.
CAS
Article
PubMed
PubMed Central
Google Scholar
Gale, J. M., Nissen, K. A., & Smerdon, M. J. (1987). UV-induced formation of pyrimidine dimers in nucleosome core DNA is strongly modulated with a period of 10.3 bases. Proceedings of the National Academy of Sciences of the United States of America, 84(19), 6644–6648. https://doi.org/10.1073/pnas.84.19.6644.
CAS
Article
PubMed
PubMed Central
Google Scholar
Gao, S., Drouin, R., & Holmquist, G. P. (1994). DNA repair rates mapped along the human PGK1 gene at nucleotide resolution. Science, 263(5152), 1438–1440. https://doi.org/10.1126/science.8128226.
CAS
Article
PubMed
Google Scholar
Garcia-Nieto, P. E., et al. (2017). Carcinogen susceptibility is regulated by genome architecture and predicts cancer mutagenesis. EMBO J 36(19): 2829-2843. https://doi.org/10.15252/embj.201796717
Gentil, A., Le Page, F., Margot, A., Lawrence, C. W., Borden, A., & Sarasin, A. (1996). Mutagenicity of a unique thymine–thymine dimer or thymine–thymine pyrimidine pyrimidone (6–4) photoproduct in mammalian cells. Nucleic Acids Research, 24, 1837–1840.
CAS
PubMed
PubMed Central
Article
Google Scholar
Gibbs, P. E. M., & Lawrence, C. W. (1993). U–U and T–T cyclobutane dimers have different mutational properties. Nucleic Acids Research, 21, 4059–4065.
CAS
PubMed
PubMed Central
Article
Google Scholar
Gilchrest, B. A., Eller, M. S., Geller, A. C., & Yaar, M. (1999). The pathogenesis of melanoma induced by ultraviolet radiation. The New England Journal of Medicine, 340, 1341–1348.
CAS
PubMed
Article
Google Scholar
Greenman, C., et al. (2007). Patterns of somatic mutation in human cancer genomes. Nature, 446(7132), 153–158.
CAS
PubMed
PubMed Central
Article
Google Scholar
Greinert, R. (2009). Skin cancer: New markers for better prevention. Pathobiology 76(2): 64–81. 000201675 [pii] https://doi.org/10.1159/000201675
Gsell, C., Richly, H., Coin, F., & Naegeli, H. (2020). A chromatin scaffold for DNA damage recognition: How histone methyltransferases prime nucleosomes for repair of ultraviolet light-induced lesions. Nucleic Acids Research, 48(4), 1652–1668. https://doi.org/10.1093/nar/gkz1229.
CAS
Article
PubMed
PubMed Central
Google Scholar
Hainaut, P., & Pfeifer, G. P. (2016). Somatic TP53 Mutations in the Era of Genome Sequencing. Cold Spring Harbor Perspectives in Medicine. https://doi.org/10.1101/cshperspect.a026179.
Article
PubMed
PubMed Central
Google Scholar
Hanawalt, P. C., & Sarasin, A. (1986). Cancer-prone hereditary diseases with DNA processing abnormalities. Trends in Genetics, 2, 124–129.
CAS
Article
Google Scholar
Hocker, T., & Tsao, H. (2007). Ultraviolet radiation and melanoma: A systematic review and analysis of reported sequence variants. Human Mutation, 28(6), 578–588.
CAS
PubMed
Article
Google Scholar
Hodis, E., et al. (2012). A landscape of driver mutations in melanoma. Cell, 150(2), 251–263. https://doi.org/10.1016/j.cell.2012.06.024.
CAS
Article
PubMed
PubMed Central
Google Scholar
Horn, S., et al. (2013). TERT promoter mutations in familial and sporadic melanoma. Science, 339(6122), 959–961. https://doi.org/10.1126/science.1230062.
CAS
Article
PubMed
Google Scholar
Horsfall, M. J., Borden, A., & Lawrence, C. W. (1997). Mutagenic properties of the T-C cyclobutane dimer. Journal of Bacteriology, 179, 2835–2839.
CAS
PubMed
PubMed Central
Article
Google Scholar
Houghton, A. N., & Polsky, D. (2002). Focus on melanoma. Cancer Cell, 2, 275–278.
CAS
PubMed
Article
Google Scholar
Hu, J., Adar, S., Selby, C. P., Lieb, J. D., & Sancar, A. (2015). Genome-wide analysis of human global and transcription-coupled excision repair of UV damage at single-nucleotide resolution. Genes & Development, 29(9), 948–960. https://doi.org/10.1101/gad.261271.115.
CAS
Article
Google Scholar
Hu, J., Adebali, O., Adar, S., & Sancar, A. (2017). Dynamic maps of UV damage formation and repair for the human genome. Proceedings of the National Academy of Sciences of the United States of America, 114(26), 6758–6763. https://doi.org/10.1073/pnas.1706522114.
CAS
Article
PubMed
PubMed Central
Google Scholar
Huang, F. W., Hodis, E., Xu, M. J., Kryukov, G. V., Chin, L., & Garraway, L. A. (2013). Highly recurrent TERT promoter mutations in human melanoma. Science, 339(6122), 957–959. https://doi.org/10.1126/science.1229259.
CAS
Article
PubMed
PubMed Central
Google Scholar
Ikehata, H., et al. (2008). UVA1 genotoxicity is mediated not by oxidative damage but by cyclobutane pyrimidine dimers in normal mouse skin. Journal of Investigative Dermatology 128(9): 2289–2296. jid200861 [pii] https://doi.org/10.1038/jid.2008.61
Ikehata, H., Mori, T., Kamei, Y., Douki, T., Cadet, J., & Yamamoto, M. (2020). Wavelength- and tissue-dependent variations in the mutagenicity of cyclobutane pyrimidine dimers in mouse skin. Photochemistry and Photobiology, 96(1), 94–104. https://doi.org/10.1111/php.13159.
CAS
Article
PubMed
Google Scholar
Inman, G. J., et al. (2018). The genomic landscape of cutaneous SCC reveals drivers and a novel azathioprine associated mutational signature. Nature Communications, 9(1), 3667. https://doi.org/10.1038/s41467-018-06027-1.
CAS
Article
PubMed
PubMed Central
Google Scholar
Jayaraman, S. S., Rayhan, D. J., Hazany, S., & Kolodney, M. S. (2014). Mutational landscape of basal cell carcinomas by whole-exome sequencing. The Journal of Investigative Dermatology, 134(1), 213–220. https://doi.org/10.1038/jid.2013.276.
CAS
Article
PubMed
Google Scholar
Jiang, N., & Taylor, J.-S. (1993). In vivo evidence that UV-induced C-T mutations at dipyrimidine sites could result from the replicative bypass of cis-syn cyclobutane dimers or their deamination products. Biochemistry, 32, 472–481.
CAS
PubMed
Article
Google Scholar
Jiang, Y., et al. (2009). UVA generates pyrimidine dimers in DNA directly. Biophysical Journal 96(3): 1151–1158. S0006–3495(08)00104–5 [pii] https://doi.org/10.1016/j.bpj.2008.10.030
Johnson, R. E., Prakash, S., & Prakash, L. (1999). Efficient bypass of a thymine-thymine dimer by yeast DNA polymerase, Poleta. Science, 283, 1001–1004.
CAS
PubMed
Article
Google Scholar
Johnson, R. E., Washington, M. T., Haracska, L., Prakash, S., & Prakash, L. (2000a). Eukaryotic polymerases iota and zeta act sequentially to bypass DNA lesions. Nature, 406(6799), 1015–1019. https://doi.org/10.1038/35023030.
CAS
Article
PubMed
Google Scholar
Johnson, R. E., Washington, M. T., Prakash, S., & Prakash, L. (2000b). Fidelity of human DNA polymerase eta. Journal of Biological Chemistry, 275, 7447–7450.
CAS
Article
PubMed
Google Scholar
Jonason, A. S., et al. (1996). Frequent clones of p53-mutated keratinocytes in normal human skin. Proceedings of the National Academy of Sciences of the United States of America, 93(24), 14025–14029. https://doi.org/10.1073/pnas.93.24.14025.
CAS
Article
PubMed
PubMed Central
Google Scholar
Kamb, A., et al. (1994). Analysis of the p16 gene (CDKN2) as a candidate for the chromosome 9p melanoma susceptibility locus. Nature Genetics, 8, 23–26.
CAS
PubMed
Article
Google Scholar
Kanao, R., et al. (2015). UV-induced mutations in epidermal cells of mice defective in DNA polymerase eta and/or iota. DNA Repair (Amsterdam), 29, 139–146. https://doi.org/10.1016/j.dnarep.2015.02.006.
CAS
Article
Google Scholar
Kielbassa, C., Roza, L., & Epe, B. (1997). Wavelength dependence of oxidative DNA damage induced by UV and visible light. Carcinogenesis, 18, 811–816.
CAS
PubMed
Article
Google Scholar
Kim, S. I., Jin, S. G., & Pfeifer, G. P. (2013). Formation of cyclobutane pyrimidine dimers at dipyrimidines containing 5-hydroxymethylcytosine. Photochemical & Photobiological Sciences, 12(8), 1409–1415. https://doi.org/10.1039/c3pp50037c.
CAS
Article
Google Scholar
Kozmin, S. G., Pavlov, Y. I., Kunkel, T. A., & Sage, E. (2003). Roles of Saccharomyces cerevisiae DNA polymerases Poleta and Polzeta in response to irradiation by simulated sunlight. Nucleic Acids Research, 31(15), 4541–4552.
CAS
PubMed
PubMed Central
Article
Google Scholar
Krauthammer, M., et al. (2012). Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nature Genetics, 44(9), 1006–1014. https://doi.org/10.1038/ng.2359.
CAS
Article
PubMed
PubMed Central
Google Scholar
Kuluncsics, Z., Perdiz, D., Brulay, E., Muel, B., & Sage, E. (1999). Wavelength dependence of ultraviolet-induced DNA damage distribution: Involvement of direct or indirect mechanisms and possible artefacts. Journal of Photochemistry and Photobiology B: Biology, 49, 71–80.
CAS
Article
Google Scholar
Kunisada, M., et al. (2005). 8-Oxoguanine formation induced by chronic UVB exposure makes Ogg1 knockout mice susceptible to skin carcinogenesis. Cancer Research, 65(14), 6006–6010. https://doi.org/10.1158/0008-5472.CAN-05-0724.
CAS
Article
PubMed
Google Scholar
Kvam, E., & Tyrell, R. M. (1997). Induction of oxidative DNA base damage in human skin cells by UV and near visible radiation. Carcinogenesis, 18, 2379–2384.
CAS
PubMed
Article
Google Scholar
Langford, I. H., Bentham, G., & McDonald, A. L. (1998). Multi-level modelling of geographically aggregated health data: A case study on malignant melanoma mortality and UV exposure in the European Community. Statistics in Medicine, 17, 41–57.
CAS
PubMed
Article
Google Scholar
Lazovich, D., Vogel, R. I., Berwick, M., Weinstock, M. A., Anderson, K. E., & Warshaw, E. M. (2010). Indoor tanning and risk of melanoma: a case–control study in a highly exposed population. Cancer Epidemiology, Biomarkers & Prevention, 19(6), 1557–1568. https://doi.org/10.1158/1055-9965.EPI-09-1249.
Article
Google Scholar
Lee, D. H., & Pfeifer, G. P. (2003). Deamination of 5-methylcytosines within cyclobutane pyrimidine dimers is an important component of UVB mutagenesis. Journal of Biological Chemistry, 278, 10314–10321.
CAS
Article
PubMed
Google Scholar
Leiter, U., Eigentler, T., & Garbe, C. (2014). Epidemiology of skin cancer. Advances in Experimental Medicine and Biology, 810, 120–140. https://doi.org/10.1007/978-1-4939-0437-2_7.
Article
PubMed
Google Scholar
Leiter, U., & Garbe, C. (2008). Epidemiology of melanoma and nonmelanoma skin cancer—the role of sunlight. Advances in Experimental Medicine and Biology, 624, 89–103.
PubMed
Article
Google Scholar
Lemaire, D. G., & Ruzsicska, B. P. (1993). Kinetic analysis of the deamination reactions of cyclobutane dimers of thymidylyl-3',5'-2'-deoxycytidine and 2'-deoxycytidylyl-3',5'-thymidine. Biochemistry, 32, 2525–2533.
CAS
PubMed
Article
Google Scholar
Ley, R. D. (1997). Ultraviolet radiation A-induced precursors of cutaneous melanoma in Monodelphis domestica. Cancer Research, 57, 3682–3684.
CAS
PubMed
Google Scholar
Liu, L., De, S., & Michor, F. (2013). DNA replication timing and higher-order nuclear organization determine single-nucleotide substitution patterns in cancer genomes. Nature Communications, 4, 1502. https://doi.org/10.1038/ncomms2502.
CAS
Article
PubMed
Google Scholar
Luke, J. J., Flaherty, K. T., Ribas, A., & Long, G. V. (2017). Targeted agents and immunotherapies: Optimizing outcomes in melanoma. Nature Reviews Clinical Oncology, 14(8), 463–482. https://doi.org/10.1038/nrclinonc.2017.43.
CAS
Article
PubMed
Google Scholar
Mao, P., et al. (2018). ETS transcription factors induce a unique UV damage signature that drives recurrent mutagenesis in melanoma. Nature Communications, 9(1), 2626. https://doi.org/10.1038/s41467-018-05064-0.
CAS
Article
PubMed
PubMed Central
Google Scholar
Mao, P., Smerdon, M. J., Roberts, S. A., & Wyrick, J. J. (2016). Chromosomal landscape of UV damage formation and repair at single-nucleotide resolution. Proceedings of the National Academy of Sciences of the United States of America, 113(32), 9057–9062. https://doi.org/10.1073/pnas.1606667113.
CAS
Article
PubMed
PubMed Central
Google Scholar
Mao, P., Smerdon, M. J., Roberts, S. A., & Wyrick, J. J. (2020). Asymmetric repair of UV damage in nucleosomes imposes a DNA strand polarity on somatic mutations in skin cancer. Genome Research, 30(1), 12–21. https://doi.org/10.1101/gr.253146.119.
CAS
Article
PubMed
PubMed Central
Google Scholar
Mao, P., Wyrick, J. J., Roberts, S. A., & Smerdon, M. J. (2017). UV-Induced DNA Damage and Mutagenesis in Chromatin. Photochemistry and Photobiology, 93(1), 216–228. https://doi.org/10.1111/php.12646.
CAS
Article
PubMed
Google Scholar
Markovitsi, D. (2016). UV-induced DNA damage: The role of electronic excited states. Photochemistry and Photobiology, 92(1), 45–51. https://doi.org/10.1111/php.12533.
CAS
Article
PubMed
Google Scholar
Marteijn, J. A., Lans, H., Vermeulen, W., & Hoeijmakers, J. H. (2014). Understanding nucleotide excision repair and its roles in cancer and ageing. Nature Reviews Molecular Cell Biology, 15(7), 465–481. https://doi.org/10.1038/nrm3822.
CAS
Article
PubMed
Google Scholar
Martincorena, I., et al. (2015). High burden and pervasive positive selection of somatic mutations in normal human skin. Science, 348(6237), 880–886. https://doi.org/10.1126/science.aaa6806.
CAS
Article
PubMed
PubMed Central
Google Scholar
Masutani, C., et al. (1999). The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase eta. Nature, 399, 700–704.
CAS
PubMed
Article
Google Scholar
Mellon, I., Spivak, G., & Hanawalt, P. C. (1987). Selective removal of transcription-blocking DNA damage from the transcribed strand of the mammalian DHFR gene. Cell, 51, 241–249.
CAS
PubMed
Article
Google Scholar
Mitchell, D. L., & Fernandez, A. A. (2011). Different types of DNA damage play different roles in the etiology of sunlight-induced melanoma. Pigment Cell & Melanoma Research, 24(1), 119–124. https://doi.org/10.1111/j.1755-148X.2010.00789.x.
CAS
Article
Google Scholar
Mitchell, D. L., et al. (2010). Ultraviolet A does not induce melanomas in a Xiphophorus hybrid fish model. Proceedings of the National Academy of Sciences of the United States of America 107(20): 9329–9334. 1000324107 [pii] https://doi.org/10.1073/pnas.1000324107
Mitchell, D. L., Haipek, C. A., & Clarkson, J. M. (1985). (6–4)Photoproducts are removed from the DNA of UV-irradiated mammalian cells more efficiently than cyclobutane pyrimidine dimers. Mutation Research, 143(3), 109–112. https://doi.org/10.1016/s0165-7992(85)80018-x.
CAS
Article
PubMed
Google Scholar
Mitchell, D. L., & Nairn, R. S. (1989). The biology of the (6–4) photoproduct. Photochemistry and Photobiology, 49, 805–819.
CAS
PubMed
Article
Google Scholar
Mitchell, D. L., Nguyen, T. D., & Cleaver, J. E. (1990). Nonrandom induction of pyrimidine-pyrimidone (6–4) photoproducts in ultraviolet-irradiated human chromatin. Journal of Biological Chemistry, 265(10), 5353–5356.
CAS
Article
PubMed
Google Scholar
Moan, J., Dahlback, A., & Setlow, R. B. (1999). Epidemiological support for an hypothesis for melanoma induction indicating a role for UVA radiation. Photochemistry and Photobiology, 70, 243–247.
CAS
PubMed
Article
Google Scholar
Mouret, S., et al. (2010). UVA-induced cyclobutane pyrimidine dimers in DNA: A direct photochemical mechanism? Organic & Biomolecular Chemistry, 8(7), 1706–1711. https://doi.org/10.1039/b924712b.
CAS
Article
Google Scholar
Mueller, S. A., et al. (2019). Mutational patterns in metastatic cutaneous squamous cell carcinoma. Journal of Investigative Dermatology 139(7): 1449–1458 e1441. 10.1016/j.jid.2019.01.008
Mullenders, L. (2015). DNA damage mediated transcription arrest: Step back to go forward. DNA Repair (Amsterdam), 36, 28–35. https://doi.org/10.1016/j.dnarep.2015.09.005.
CAS
Article
Google Scholar
Noonan, F. P., et al. (2012). Melanoma induction by ultraviolet A but not ultraviolet B radiation requires melanin pigment. Nature Communications, 3, 884. https://doi.org/10.1038/ncomms1893.
CAS
Article
PubMed
Google Scholar
Pani, B., & Nudler, E. (2017). Mechanistic insights into transcription coupled DNA repair. DNA Repair (Amsterdam), 56, 42–50. https://doi.org/10.1016/j.dnarep.2017.06.006.
CAS
Article
Google Scholar
Perera, D., Poulos, R. C., Shah, A., Beck, D., Pimanda, J. E., & Wong, J. W. (2016). Differential DNA repair underlies mutation hotspots at active promoters in cancer genomes. Nature, 532(7598), 259–263. https://doi.org/10.1038/nature17437.
CAS
Article
PubMed
Google Scholar
Perry, D. M., Barton, V., & Alberg, A. J. (2017). Epidemiology of Keratinocyte Carcinoma. Current Dermatology Reports, 6(3), 161–168. https://doi.org/10.1007/s13671-017-0185-6.
Article
PubMed
PubMed Central
Google Scholar
Pfeifer, G. P. (1997). Formation and processing of UV photoproducts: Effects of DNA sequence and chromatin environment. Photochemistry and Photobiology, 65, 270–283.
CAS
PubMed
Article
Google Scholar
Pfeifer, G. P. (2015). How the environment shapes cancer genomes. Current Opinion in Oncology, 27(1), 71–77. https://doi.org/10.1097/CCO.0000000000000152.
CAS
Article
PubMed
PubMed Central
Google Scholar
Pfeifer, G. P., & Besaratinia, A. (2012). UV wavelength-dependent DNA damage and human non-melanoma and melanoma skin cancer. Photochemical & Photobiological Sciences, 11(1), 90–97. https://doi.org/10.1039/c1pp05144j.
CAS
Article
Google Scholar
Pfeifer, G. P., Drouin, R., Riggs, A. D., & Holmquist, G. P. (1991). In vivo mapping of a DNA adduct at nucleotide resolution: Detection of pyrimidine (6–4) pyrimidone photoproducts by ligation-mediated polymerase chain reaction. Proceedings of the National academy of Sciences of the United States of America, 88, 1374–1378.
CAS
PubMed
PubMed Central
Article
Google Scholar
Pfeifer, G. P., Drouin, R., Riggs, A. D., & Holmquist, G. P. (1992). Binding of transcription factors creates hot spots for UV photoproducts in vivo. Molecular and Cellular Biology, 12, 1798–1804.
CAS
PubMed
PubMed Central
Google Scholar
Pfeifer, G. P., You, Y. H., & Besaratinia, A. (2005). Mutations induced by ultraviolet light. Mutation Research, 571(1–2), 19–31.
CAS
PubMed
Article
Google Scholar
Pho, L., Grossman, D., & Leachman, S. A. (2006). Melanoma genetics: A review of genetic factors and clinical phenotypes in familial melanoma. Current Opinion in Oncology, 18(2), 173–179.
CAS
PubMed
Article
Google Scholar
Pich, O., F. Muinos, R. Sabarinathan, I. Reyes-Salazar, A. Gonzalez-Perez & N. Lopez-Bigas (2018). Somatic and germline mutation periodicity follow the orientation of the DNA minor groove around nucleosomes. Cell 175(4): 1074–1087 e1018. 10.1016/j.cell.2018.10.004
Pickering, C. R., et al. (2014). Mutational landscape of aggressive cutaneous squamous cell carcinoma. Clinical Cancer Research, 20(24), 6582–6592. https://doi.org/10.1158/1078-0432.CCR-14-1768.
CAS
Article
PubMed
PubMed Central
Google Scholar
Pleasance, E. D., et al. (2010). A comprehensive catalogue of somatic mutations from a human cancer genome. Nature, 463(7278), 191–196. https://doi.org/10.1038/nature08658.
CAS
Article
PubMed
Google Scholar
Poulos, R. C., Thoms, J. A. I., Guan, Y. F., Unnikrishnan, A., Pimanda, J. E., & Wong, J. W. H. (2016). Functional mutations form at CTCF-cohesin binding sites in melanoma due to uneven nucleotide excision repair across the motif. Cell Reports, 17(11), 2865–2872. https://doi.org/10.1016/j.celrep.2016.11.055.
CAS
Article
PubMed
Google Scholar
Premi, S., et al. (2019). Genomic sites hypersensitive to ultraviolet radiation. Proceedings of the National Academy of Sciences of the United States of America, 116(48), 24196–24205. https://doi.org/10.1073/pnas.1907860116.
CAS
Article
PubMed
PubMed Central
Google Scholar
Premi, S., et al. (2015). Photochemistry. Chemiexcitation of melanin derivatives induces DNA photoproducts long after UV exposure. Science 347(6224): 842–847. 10.1126/science.1256022
Ramazanov, R. R., Maksimov, D. A., & Kononov, A. I. (2015). Noncanonical stacking geometries of nucleobases as a preferred target for solar radiation. Journal of the American Chemical Society, 137(36), 11656–11665. https://doi.org/10.1021/jacs.5b05140.
CAS
Article
PubMed
Google Scholar
Reichrath, J., et al. (2020). Sunbeds and Melanoma Risk: Many Open Questions, Not Yet Time to Close the Debate. Anticancer Research 40(1): 501–509. https://doi.org/10.21873/anticanres.13978
Rochette, P. J., et al. (2003). UVA-induced cyclobutane pyrimidine dimers form predominantly at thymine–thymine dipyrimidines and correlate with the mutation spectrum in rodent cells. Nucleic Acids Research, 31(11), 2786–2794.
CAS
PubMed
PubMed Central
Article
Google Scholar
Sabarinathan, R., Mularoni, L., Deu-Pons, J., Gonzalez-Perez, A., & Lopez-Bigas, N. (2016). Nucleotide excision repair is impaired by binding of transcription factors to DNA. Nature, 532(7598), 264–267. https://doi.org/10.1038/nature17661.
CAS
Article
PubMed
Google Scholar
Sage, E. (1993). Distribution and repair of photolesions in DNA: Genetic consequences and the role of sequence context. Photochemistry and Photobiology, 57(1), 163–174.
CAS
PubMed
Article
Google Scholar
Sample, A., & He, Y. Y. (2018). Mechanisms and prevention of UV-induced melanoma. Photodermatology, Photoimmunology and Photomedicine, 34(1), 13–24. https://doi.org/10.1111/phpp.12329.
CAS
Article
PubMed
Google Scholar
Schuch, A. P., Moreno, N. C., Schuch, N. J., Menck, C. F. M., & Garcia, C. C. M. (2017). Sunlight damage to cellular DNA: Focus on oxidatively generated lesions. Free Radical Biology and Medicine, 107, 110–124. https://doi.org/10.1016/j.freeradbiomed.2017.01.029.
CAS
Article
PubMed
Google Scholar
Schuster-Bockler, B., & Lehner, B. (2012). Chromatin organization is a major influence on regional mutation rates in human cancer cells. Nature, 488(7412), 504–507. https://doi.org/10.1038/nature11273.
CAS
Article
PubMed
Google Scholar
Setlow, R. B. (1974). The wavelengths in sunlight effective in producing skin cancer: A theoretical analysis. Proceedings of the National academy of Sciences of the United States of America, 71, 3363–3366.
CAS
PubMed
PubMed Central
Article
Google Scholar
Setlow, R. B., Carrier, W. L., & Bollum, F. J. (1965). Pyrimidine dimers in UV-irradiated poly dI:dC. Proceedings of the National academy of Sciences of the United States of America, 53(5), 1111–1118. https://doi.org/10.1073/pnas.53.5.1111.
CAS
Article
PubMed
PubMed Central
Google Scholar
Setlow, R. B., Grist, E., Thompson, K., & Woodhead, A. D. (1993). Wavelengths effective in induction of malignant melanoma. Proceedings of the National academy of Sciences of the United States of America, 90, 6666–6670.
CAS
PubMed
PubMed Central
Article
Google Scholar
Shain, A. H., et al. (2015). The Genetic Evolution of Melanoma from Precursor Lesions. New England Journal of Medicine, 373(20), 1926–1936. https://doi.org/10.1056/NEJMoa1502583.
CAS
Article
PubMed
Google Scholar
Sharonov, A., Gustavsson, T., Marguet, S., & Markovitsi, D. (2003). Photophysical properties of 5-methylcytidine. Photochemical & Photobiological Sciences, 2(4), 362–364.
CAS
Article
Google Scholar
Song, Q., V. J. Cannistraro & J. S. Taylor (2011). Rotational position of a 5-methylcytosine-containing cyclobutane pyrimidine dimer in a nucleosome greatly affects its deamination rate. Journal of Biological Chemistry 286(8): 6329–6335. M110.183178 [pii] 10.1074/jbc.M110.183178
Song, Q., Sherrer, S. M., Suo, Z., & Taylor, J. S. (2012). Preparation of site-specific T=mCG cis-syn cyclobutane dimer-containing template and its error-free bypass by yeast and human polymerase eta. Journal of Biological Chemistry, 287(11), 8021–8028. https://doi.org/10.1074/jbc.M111.333591.
CAS
Article
PubMed
PubMed Central
Google Scholar
Spivak, G. (2015). Nucleotide excision repair in humans. DNA Repair (Amsterdam), 36, 13–18. https://doi.org/10.1016/j.dnarep.2015.09.003.
CAS
Article
Google Scholar
Stary, A., Kannouche, P., Lehmann, A. R., & Sarasin, A. (2003). Role of DNA polymerase eta in the UV mutation spectrum in human cells. Journal of Biological Chemistry, 278(21), 18767–18775. https://doi.org/10.1074/jbc.M211838200.
CAS
Article
PubMed
Google Scholar
Suppa, M., & Gandini, S. (2019). Sunbeds and melanoma risk: Time to close the debate. Current Opinion in Oncology, 31(2), 65–71. https://doi.org/10.1097/CCO.0000000000000507.
Article
PubMed
Google Scholar
Takasawa, K., Masutani, C., Hanaoka, F., & Iwai, S. (2004). Chemical synthesis and translesion replication of a cis-syn cyclobutane thymine–uracil dimer. Nucleic Acids Research, 32(5), 1738–1745. https://doi.org/10.1093/nar/gkh342.
CAS
Article
PubMed
PubMed Central
Google Scholar
Thomas, N. E., Berwick, M., & Cordeiro-Stone, M. (2006). Could BRAF mutations in melanocytic lesions arise from DNA damage induced by ultraviolet radiation? The Journal of Investigative Dermatology, 126(8), 1693–1696.
CAS
PubMed
Article
Google Scholar
Tommasi, S., Denissenko, M. F., & Pfeifer, G. P. (1997). Sunlight induces pyrimidine dimers preferentially at 5-methylcytosine bases. Cancer Research, 57, 4727–4730.
CAS
PubMed
Google Scholar
Tommasi, S., Oxyzoglou, A. B., & Pfeifer, G. P. (2000). Cell cycle-independent removal of UV-induced pyrimidine dimers from the promoter and the transcription initiation domain of the human CDC2 gene. Nucleic Acids Research, 28, 3991–3998.
CAS
PubMed
PubMed Central
Article
Google Scholar
Tornaletti, S., & Pfeifer, G. P. (1994). Slow repair of pyrimidine dimers at p53 mutation hotspots in skin cancer. Science, 263, 1436–1438.
CAS
PubMed
Article
Google Scholar
Tornaletti, S., & Pfeifer, G. P. (1995). UV light as a footprinting agent: Modulation of UV-induced DNA damage by transcription factors bound at the promoters of three human genes. Journal of Molecular Biology, 249, 714–728.
CAS
PubMed
Article
Google Scholar
Trucco, L. D., et al. (2019). Ultraviolet radiation-induced DNA damage is prognostic for outcome in melanoma. Nature Medicine, 25(2), 221–224. https://doi.org/10.1038/s41591-018-0265-6.
CAS
Article
PubMed
Google Scholar
Tu, Y., Dammann, R., & Pfeifer, G. P. (1998). Sequence and time-dependent deamination of cytosine bases in UVB-induced cyclobutane pyrimidine dimers in vivo. Journal of Molecular Biology, 284, 297–311.
CAS
PubMed
Article
Google Scholar
Tu, Y., Tornaletti, S., & Pfeifer, G. P. (1996a). DNA repair domains within a human gene: Selective repair of sequences near the transcription initiation site. EMBO Journal, 14, 675–683.
Article
Google Scholar
Tu, Y., Tornaletti, S., & Pfeifer, G. P. (1996b). DNA repair domains within a human gene: Selective repair of sequences near the transcription initiation site. EMBO Journal, 15, 675–683.
CAS
Article
PubMed
PubMed Central
Google Scholar
Tucker, M. A. (2008). Is sunlight important to melanoma causation? Cancer Epidemiology, Biomarkers & Prevention, 17(3), 467–468.
Article
Google Scholar
Van Raamsdonk, C. D., et al. (2010). Mutations in GNA11 in uveal melanoma. New England Journal of Medicine, 363(23), 2191–2199. https://doi.org/10.1056/NEJMoa1000584.
Article
PubMed
Google Scholar
Vu, B., Cannistraro, V. J., Sun, L., & Taylor, J. S. (2006). DNA synthesis past a 5-methylC-containing cis-syn-cyclobutane pyrimidine dimer by yeast pol eta is highly nonmutagenic. Biochemistry, 45(30), 9327–9335.
CAS
PubMed
Article
Google Scholar
Wang, N. J., et al. (2011). Loss-of-function mutations in Notch receptors in cutaneous and lung squamous cell carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 108(43), 17761–17766. https://doi.org/10.1073/pnas.1114669108.
Article
PubMed
PubMed Central
Google Scholar
Wang, S. Q., et al. (2001). Ultraviolet A and melanoma: A review. Journal of the American Academy of Dermatology, 44, 837–846.
CAS
PubMed
Article
Google Scholar
Wellinger, R. E., & Thoma, F. (1997). Nucleosome structure and positioning modulate nucleotide excision repair in the non-transcribed strand of an active gene. EMBO Journal, 16(16), 5046–5056. https://doi.org/10.1093/emboj/16.16.5046.
CAS
Article
PubMed
PubMed Central
Google Scholar
Wong, S. Q., et al. (2015). UV-Associated Mutations Underlie the Etiology of MCV-Negative Merkel Cell Carcinomas. Cancer Research, 75(24), 5228–5234. https://doi.org/10.1158/0008-5472.CAN-15-1877.
CAS
Article
PubMed
Google Scholar
Woo, Y. H., & Li, W. H. (2012). DNA replication timing and selection shape the landscape of nucleotide variation in cancer genomes. Nature Communications, 3, 1004. https://doi.org/10.1038/ncomms1982.
CAS
Article
PubMed
Google Scholar
Woodhead, A. D., Setlow, R. B., & Tanaka, M. (1999). Environmental factors in nonmelanoma and melanoma skin cancer. Journal of Epidemiology, 9, S102–S114.
CAS
PubMed
Article
Google Scholar
Xiang, F., Lucas, R., Hales, S., & Neale, R. (2014). Incidence of nonmelanoma skin cancer in relation to ambient UV radiation in white populations, 1978–2012: Empirical relationships. JAMA Dermatology, 150(10), 1063–1071. https://doi.org/10.1001/jamadermatol.2014.762.
Article
PubMed
Google Scholar
Yizhak, K., et al. (2019). RNA sequence analysis reveals macroscopic somatic clonal expansion across normal tissues. Science. https://doi.org/10.1126/science.aaw0726
Yoon, J.-H., Lee, C.-S., O’Connor, T., Yasui, A., & Pfeifer, G. P. (2000a). The DNA damage spectrum produced by simulated sunlight. Journal of Molecular Biology, 299, 681–693.
CAS
PubMed
Article
Google Scholar
Yoon, J. H., Lee, C. S., O'Connor, T. R., Yasui, A., & Pfeifer, G. P. (2000b). The DNA damage spectrum produced by simulated sunlight. Journal of Molecular Biology, 299(3), 681–693. https://doi.org/10.1006/jmbi.2000.3771.
CAS
Article
PubMed
Google Scholar
Yoon, J. H., et al. (2019). Error-prone replication through UV lesions by DNA polymerase theta protects against skin cancers. Cell 176(6): 1295–1309 e1215. https://doi.org/10.1016/j.cell.2019.01.023
Yoon, J. H., Park, J., Conde, J., Wakamiya, M., Prakash, L., & Prakash, S. (2015). Rev1 promotes replication through UV lesions in conjunction with DNA polymerases eta, iota, and kappa but not DNA polymerase zeta. Genes & Development, 29(24), 2588–2602. https://doi.org/10.1101/gad.272229.115.
CAS
Article
Google Scholar
Yoon, J. H., L. Prakash & S. Prakash (2009). Highly error-free role of DNA polymerase eta in the replicative bypass of UV-induced pyrimidine dimers in mouse and human cells. Proceedings of the National Academy of Sciences of the United States of America 106(43): 18219–18224. 0910121106 [pii]. https://doi.org/10.1073/pnas.0910121106
You, Y.-H., Li, C., & Pfeifer, G. P. (1999). Involvement of 5-methylcytosine in sunlight-induced mutagenesis. Journal of Molecular Biology, 293, 493–503.
CAS
PubMed
Article
Google Scholar
You, Y. H., Lee, D. H., Yoon, J. H., Nakajima, S., Yasui, A., & Pfeifer, G. P. (2001). Cyclobutane pyrimidine dimers are responsible for the vast majority of mutations induced by UVB irradiation in mammalian cells. Journal of Biological Chemistry, 276, 44688–44694.
CAS
Article
PubMed
Google Scholar
You, Y. H., & Pfeifer, G. P. (2001). Similarities in sunlight-induced mutational spectra of CpG-methylated transgenes and the p53 gene in skin cancer point to an important role of 5-methylcytosine residues in solar UV mutagenesis. Journal of Molecular Biology, 305, 389–399.
CAS
PubMed
Article
Google Scholar
Yu, S. L., Johnson, R. E., Prakash, S., & Prakash, L. (2001). Requirement of DNA polymerase eta for error-free bypass of UV-induced CC and TC photoproducts. Molecular and Cellular Biology, 21(1), 185–188. https://doi.org/10.1128/MCB.21.1.185-188.2001.
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhang, X., Rosenstein, B. S., Wang, Y., Lebwohl, M., Mitchell, D. M., & Wei, H. (1997). Induction of 8-oxo-7,8-dihydro-2'-deoxyguanosine by ultraviolet radiation in calf thymus DNA and HeLa cells. Photochemistry and Photobiology, 65, 119–124.
CAS
PubMed
Article
Google Scholar
Ziegler, A., et al. (1993). Mutation hot spots due to sunlight in the p53 gene of nonmelanoma skin cancers. Proceedings of the National academy of Sciences of the United States of America, 90, 4216–4220.
CAS
PubMed
PubMed Central
Article
Google Scholar