Skip to main content

Advertisement

Log in

Assessing Temporal Changes of the Soil Mechanical Strength of a Volcanic Ash Soil at Different Bulk Densities Under Pasture

  • Original Paper
  • Published:
Journal of Soil Science and Plant Nutrition Aims and scope Submit manuscript

Abstract

This study analyzed the time- and water content-dependent changes in penetration resistance (PR) profiles of an Andosol at different dry bulk densities under pasture. PR was measured from the soil surface to a soil depth of 80 cm in a soil compaction trial (T0, 0.65 Mgm–3; T1, 0.75 Mgm–3; and T3, 0.85 Mgm–3) established in May 2019 in a Petroduric Silandic Andosol under pasture grazed by sheep. Both the volumetric water content and matric potential were measured with sensors at the soil surface and at depths of 10, 20, and 60 cm. In addition, undisturbed soil samples were collected to determine the precompression stress. Water retention curves and air permeability (6 kPa matric potential) were measured. The soil compaction events induced an increase in bulk density and a decrease in wide coarse pores as well as air permeability, reflecting an increase in precompression stress and penetration resistance. As the soil water content (WC) decreased, the PR increased at all studied soil depths; under the driest conditions (WC: 28 Vol. %), the highest accumulated PR values were assessed between 0 and 10 cm. At field capacity, the highest registered PR values, after compaction events at the soil surface, did not reach the critical value of 2 MPa; however, they represented the soil with the highest bulk density and precompression stress as well as with a lower volume of macropores and air permeability. Accordingly, as the water content decreased, the maximum values of PR were observed near the soil surface in the densest soil. The initial differences in PR values assessed between treatments at the soil surface, disappeared few months later because of soil drying and animal trampling reflecting that the soil physical properties tended to reach an equilibrium with the applied external stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ajayi A, Horn R (2016) Transformation of ex-arable land to permanent grassland promotes pore rigidity and mechanical soil resilience. Ecol Eng 94:592–598. https://doi.org/10.1016/j.ecoleng.2016.06.104

    Article  Google Scholar 

  • Bachmann J, Contreras K, Hartge KH, MacDonald R (2006) Comparison of soil strength data obtained in situ with penetrometer and with vane shear test. Soil Till Res 87:112–118. https://doi.org/10.1016/j.still.2005.03.001

    Article  Google Scholar 

  • Baumgartl T, Köck B (2004) Modeling volume change and mechanical properties with hydraulic models. Soil Sci Soc Am J 68:57–65. https://doi.org/10.2136/sssaj2004.5700

    Article  CAS  Google Scholar 

  • Bravo S, González-Chang M, Dec D, Valle S, Wendroth O, Zúñiga F, Dörner J (2020) Using wavelet analyses to identify temporal coherence in soil physical properties in a volcanic ash-derived soil. Agr for Met 285–286:107909. https://doi.org/10.1016/j.agrformet.2020.107909

    Article  Google Scholar 

  • Casagrande A (1936) Characteristics of cohesive soils affecting the stability of slopes and Earth fill. J Boston Soc Civil Eng 23:13–32

    Google Scholar 

  • CIREN (2003) Natural Resources Information Center. Agrological study X region. Descriptions of soils, materials and symbols. CIREN, issue 123, Santiago, Chile (Centro de Información de Recursos Naturales. Descripciones de Suelos. Materiales y Símbolos. Estudio Agrológico X Región. CIREN, Publicación 123, Santiago, Chile).

  • Clunes J, Pinochet D (2020) Effect of slow-release nitrogen on the nitrogen availability in an andisol and the critical nitrogen concentration in wheat. Agron J 112:1250–1262. https://doi.org/10.1002/agj2.20131

    Article  CAS  Google Scholar 

  • Clunes J, Pinochet D (2021) Leucine retention by the clay-sized mineral fraction. An indicator of C storage. Agro Sur 48:37–46. https://doi.org/10.4206/agrosur.2020.v48n3-05

    Article  Google Scholar 

  • Dec D, Bravo S, Clunes J, Granda S, López I, Ordóñez I, Zúñiga F, Dörner J (2022) The role of the specific properties of an andosol as a water reservoir to improve pasture growth and prevent soil physical degradation in irrigated grazing systems. J Soil Sci Plant Nutr 1-18. https://doi.org/10.1007/s42729-022-00925-6

  • Dec D, Bravo S, Horn R, Uteau D, Peth S, Zúñiga F, Clunes J, Granda S, Martínez O, Balocchi O, Alonso M, Dörner J (2021) Analyzing the impact of grazing and short-term irrigation management on soil mechanical strength of a volcanic ash soil under different types of pastures. Soil Till Res 105130. https://doi.org/10.1016/j.still.2021.105130

  • Dec D, Dörner J, Balocchi O (2011) Temporal and spatial variability of structure dependent properties of a volcanic ash soil under pasture in southern Chile. Chil J Agric Res 71:293–303. https://doi.org/10.4067/S0718-58392011000200015

    Article  Google Scholar 

  • Dec D, Zúñiga F, Thiers O, Paulino L, Villagra V, Tadich I, Horn R, Dörner J (2017) Water and temperature dynamics of Aquands under different uses in southern Chile. J Soil Sci Plant Nutr 17:141–154. https://doi.org/10.4067/S0718-95162017005000011

    Article  CAS  Google Scholar 

  • Dörner J, Dec D, Peng X, Horn R (2009) Change of shrinkage behavior of an Andisol in southern Chile: effects of land use and wetting/drying cycles. Soil Till Res 106:45–53. https://doi.org/10.1016/j.still.2009.09.013

    Article  Google Scholar 

  • Dörner J, Dec D, Peng X, Horn R (2010) Effect of land use change on the dynamic behaviour of structural properties of an Andisol in southern Chile under saturated and unsaturated hydraulic conditions. Geoderma 159:189–197. https://doi.org/10.1016/j.geoderma.2010.07.011

    Article  Google Scholar 

  • Dörner J, Huertas J, Cuevas JG, Leiva C, Paulino L, Arumí JL (2015) Water content dynamics in a volcanic ash soil slope in southern Chile. J Plant Nutr Soil Sci 178:693–702. https://doi.org/10.1002/jpln.201500112

    Article  CAS  Google Scholar 

  • Dörner J, Horn R, Dec D, Wendroth O, Fleige H, Zúñiga F (2017) Land-use-dependent change in the soil mechanical strength and resilience of a shallow volcanic ash soil in Southern Chile. Soil Sci Soc Am J 81:1064–1073. https://doi.org/10.2136/sssaj2016.11.0378

    Article  CAS  Google Scholar 

  • Dörner J, Bravo S, Stoorvogel M, Dec D, Valle S, Clunes J, Horn R, Uteau D, Wendroth O, Lagos L, Zúñiga F (2022) Short-term effects of compaction on soil mechanical properties and pore functions of an Andisol. Soil Till Res 221:105396. https://doi.org/10.1016/j.still.2022.105396

    Article  Google Scholar 

  • Fulkerson WJ, Donaghy DJ (2001) Plant-soluble carbohydrate reserves ad senescence – key criteria for developing an effective grazing management system for ryegrass-based pastures: a review. Aus J Exp Agri 41:261–275. https://doi.org/10.1071/EA00062

    Article  CAS  Google Scholar 

  • González-Reyes A, Muñoz AA (2013) Precipitation changes of Valdivia city (Chile) during the past 150 years (Cambios en la precipitación de la ciudad de Valdivia (Chile) durante los últimos 150 años). Bosque 34:191–200. https://doi.org/10.4067/S0717-92002013000200008

    Article  Google Scholar 

  • Greenwood KL, McKenzie MB (2001) Grazing effects on soil physical properties and the consequences for pasture: a review. Aus J Exp Agri 41:1231–1250. https://doi.org/10.1071/EA00102

    Article  Google Scholar 

  • Håkansson H, Voorhees C (1998) Soil compaction. In: Lal R, Blum WH, Valentine C, Stewart BA (eds) Advances in Soil Science. CRC Press LLC, Methods for Assessment of Soil Degradation, pp 167–179

    Google Scholar 

  • Hartge KH, Horn R (2009) Die physikalische Untersuchung von Böden. Praxis Messmethoden Auswertung. 4. vollst. Überarbeitete Auflage. Schweizerbart Vorlage, Stuttgart

  • Hartge KH, Horn R (2016) Essential soil physics. Schweizerbart Science Publisher, Stuttgart

    Google Scholar 

  • Horn R (1988) Compressibility of arable land. In: Drescher J, et al. (eds), Impact of water and external forces on soil structure, Catena Suppl. 11 M Catena Verlag, Cremlingen-Destedt, Germany, pp 53–71.

  • Horn R, Fleige H (2003) A method for assessing the impact of load on mechanical stability and on physical properties of soils. Soil Res 73:89–99. https://doi.org/10.1016/S01671987(03)00102-8

    Article  Google Scholar 

  • Horn R, Fleige H (2009) Risk assessment of subsoil compaction for arable soils in Northwest Germany at farm scale. Soil Till Res 102:201–208. https://doi.org/10.1016/j.still.2008.07.015

    Article  Google Scholar 

  • Horn R, Hartge KH, Bachmann J, Kirkham MB (2007) Mechanical Stresses in soils assessed from bulk density and penetration resistance data. Soil Sci Soc Amer J 71:1455–1459. https://doi.org/10.2136/sssaj2006.0044

    Article  CAS  Google Scholar 

  • IUSS Working Group WRB (2022) World reference base for soil resources. International soil classification system for naming soils and creating legends for soil maps. In: International Union of Soil Sciences (IUSS), 4th edn, Vienna, Austria

  • Keller T, Da Silva AP, Tormena CA, Giarola NFB, Cavalieri KMV, Stettler M, Arvidsson J (2015) SoilFlex-LLWR: linking a soil compaction model with the least limiting water range concept. Soil Use Manag 31:321–329. https://doi.org/10.1111/sum.12175

    Article  Google Scholar 

  • Matus F, Rumpel C, Neculman R, Panichini M, Mora ML (2014) Soil carbon storage and stabilisation in andic soils: a review. Catena 120:102–110. https://doi.org/10.1016/j.catena.2014.04.008

    Article  CAS  Google Scholar 

  • Mera M, Lizana XC, Calderini DF (2015) Cropping systems in environments with high yield potential of Southern Chile. In: Sadras VO, Calderini DF (eds) Crop physiology, 2nd edn. Applications for genetic improvement and agronomy. Academic Press, Waltham, MA, pp 111–140. https://doi.org/10.1016/B978-0-12-417104-6.00006-6

    Chapter  Google Scholar 

  • Navarro G, Dec D, Balocchi O, López I, Clunes J, Dörner J (2017) Effect of grazing density on the bearing capacity and functionality of the pore system of an Andisol (Efecto de la densidad de pastoreo sobre la capacidad de soporte y funcionalidad del sistema poroso de un Andisol). Agro Sur 45:63–73. https://doi.org/10.4206/agrosur.2017.v45n1-08

    Article  Google Scholar 

  • Negron M (2011) Effect of intensive grazing of dairy cows of contrasting weight-size on the sustainability of the soil-pasture system. Master thesis in Animal Production Universidad Austral de Chile (Efecto del pastoreo intensivo de vacas lecheras de peso-tamaño contrastante sobre la sustentabilidad del complejo suelo-pradera. Tesis Magister en ciencias mención Producción Animal Universidad Austral de Chile), pp 74

  • Negron M, López I, Dörner J (2019) Consequences of intensive grazing by dairy cows of contrasting live weights on volcanic ash top soil structure and pasture dynamics. Soil Till Res 189:88–97. https://doi.org/10.1016/j.still.2018.12.025

    Article  Google Scholar 

  • Peng X, Horn R, Smucker A (2007) Pore shrinkage dependency of inorganic and organic soils on wetting and drying cycles. Soil Sci Soc Am J 71:1095–1104. https://doi.org/10.2136/sssaj2006.0156

    Article  CAS  Google Scholar 

  • Peterson RA (2021) Finding optimal normalizing transformations via bestNormalize. The R Journal 13:310–329. https://doi.org/10.32614/RJ-2021-041

    Article  Google Scholar 

  • Peterson RA, Cavanaugh JE (2020) Ordered quantile normalization: a semiparametric transformation built for the cross-validation era. J Appl Stat 47:2312–2327. https://doi.org/10.1080/02664763.2019.1630372

    Article  PubMed  Google Scholar 

  • RStudio Team (2022) RStudio: integrated development environment for R. RStudio, PBC, Boston, MA http://www.rstudio.com/

    Google Scholar 

  • Salas R, Ordóñez I, Valle S, López I, Dec D, Descalzi C, Dörner J (2016) Spatial variation of physical properties of a soil derived from volcanic ash subjected to different strategies of improvement of a degraded pasture (Variación espacial de propiedades físicas de un suelo derivado de cenizas volcánicas sometido a distintas estrategias de mejoramiento de una pradera degradada). Agro Sur 44:29–40. https://doi.org/10.4206/agrosur.2016.v44n3-04

    Article  Google Scholar 

Download references

Acknowledgements

The authors are also tremendously grateful for field and laboratory work conducted by Mónica Díaz, Victor Vera Peters, and the Project Team.

Funding

We thank the FONDECYT Grant 1191057 for funding this research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Dorner.

Ethics declarations

Conflicts of Interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dorner, J., Bravo, S., Clunes, J. et al. Assessing Temporal Changes of the Soil Mechanical Strength of a Volcanic Ash Soil at Different Bulk Densities Under Pasture. J Soil Sci Plant Nutr 23, 2007–2017 (2023). https://doi.org/10.1007/s42729-023-01155-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42729-023-01155-0

Keywords

Navigation