Skip to main content

Advertisement

Log in

Phosphorus Use Management in Paddy Fields by Enriching Periphyton with Its Phosphate-Solubilizing Bacteria and Fungi at the Late Stage of Rice Growth

  • Original Paper
  • Published:
Journal of Soil Science and Plant Nutrition Aims and scope Submit manuscript

Abstract

Phosphorus use efficiency (PUE) in paddy fields is low, and this fertilizer has lower availability to rice plants. Recently, the application of periphyton to regulate nutrient elements cycle especially P in paddy fields has received special attention. However, the effects of periphyton as well as phosphate-solubilizing microorganisms (PSM) on rice plant growth, P bioavailability, and its use management in calcareous soils have not been investigated. The aim of this study was to investigate the effects of periphyton and their effective PSM on P bioavailability, rice growth parameters, phosphatase activity, P fractionation, and P fertilizer efficiency in a calcareous soil fertilized or non-fertilized with chemical P fertilizer. The results showed that both natural periphytons and PSM-enriched periphytons decreased water-soluble P concentration at the early stages of rice growth but increased the concentration of water-soluble P and soil available P at the late stage of the plant growth. In periphyton treatments, the average pH of water and soil increased by 0.7 and 3 units, respectively. Periphytons led to an increase in the amount of easily available P species, such as Ca2-P, Ca10-P, and Al-P forms, in the calcareous soil. Periphytons also reduced P fixation in the soil and increased the PUE (2–29%) compared to the treatments without periphyton. The periphytons enriched with PSM showed the highest PUE at different levels of P fertilizer. Periphytons significantly increased rice growth parameters and P concentration in different parts of the rice by increasing soil available P concentration, soil organic matter, and soil acid and alkaline phosphatase activity. The use of periphyton enriched with PSM can increase PUE for rice in paddy fields. It seems that the use of PSM to decompose periphyton biomass and release accumulated P at the late stages of rice growth is the best strategy for using periphytons in paddy fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

Download references

Acknowledgements

The authors are grateful to the University of Tehran for supporting this study.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed equally to this study.

Corresponding author

Correspondence to Hassan Etesami.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOC 396 kb)

ESM 2

(DOC 62 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alikhani, H.A., Beheshti, M., Pourbabaee, A.A. et al. Phosphorus Use Management in Paddy Fields by Enriching Periphyton with Its Phosphate-Solubilizing Bacteria and Fungi at the Late Stage of Rice Growth. J Soil Sci Plant Nutr 23, 1896–1912 (2023). https://doi.org/10.1007/s42729-023-01145-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42729-023-01145-2

Keywords

Navigation