Skip to main content

Advertisement

Log in

Metabolic Self-regulation of Pisum sativum L. Under Varying Soil Fertility in South Africa

  • Original Paper
  • Published:
Journal of Soil Science and Plant Nutrition Aims and scope Submit manuscript

Abstract

Legumes have been used to improve soil fertility however, most legume research focuses on crop and not forage legumes. Forage legumes, including Pisum sativum L., increase the nutritional value in pastures and provide high amounts of soil protein and minerals required for plant growth. We investigated the effects of varying soil composition on plant growth, symbiosis establishment, and nutrient acquisition. We also aimed to compare phenolic compound production, since phenolics are reported to play a vital role in plant defense, pollination/dispersal, and symbiosis with quorum-sensing plant growth-promoting bacteria. Using quantitative techniques, we evaluated the effect of nutrient deficiency in plant–microbe symbiosis, nutrition, and carbon costs, as well as the phenolic concentrations in P. sativum. Four distinct regional soils in KwaZulu-Natal (KZN), geographically covering grassland and savannah ecosystems, were used as growth substrates. Plants maintained their root dry weights and growth rates across the four soil types. Low pH, total cations, and high exchange acidity in Bergville soil resulted in decreased total plant dry weights. P. sativum grown in Izingolweni soils relied more on atmospheric N fixed by endophytic/associative bacteria from the genera Cupriavidus, Paenibacillus, Cohnella, and Bacillus, while those grown in Hluhluwe soils relied on soil N. Plant associative microbes might modulate nutrient availability for plant uptake in nutrient poor grassland and savannah ecosystems. P. sativum acclimatized to changes in soil nutrient concentrations and pH in the studied ecosystems by changing N source preferences and phenolic concentrations. The acclimatization of plants is likely modulated by the presence of rhizospheric microorganisms interacting with the plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Experimental raw data will be available on request.

References

  • Ågren GI, Franklin O (2003) Root: shoot ratios, optimization and nitrogen productivity. Ann Bot 92:795–800

    Article  PubMed  PubMed Central  Google Scholar 

  • Aguilar JMM, Ashby AM, Richards AJM, Loake GJ, Watson MD, Shaw CH (1998) Chemotaxis of Rhizobium leguminosarum biovar phaseoli towards flavonoid inducers of the symbiotic nodulation genes. J Gen Microbiol 134:2741–2746

    Google Scholar 

  • Behihun, T., Tolosa, S., Tadele, M. and Kebede, F. 2017. Effect of biochar application on growth of garden pea (Pisum sativum L.) in acidic soils of Blue Woreda Gedeo zone southern Ethiopia. Intn. J. of Agron. Article ID 6827323, 8 pages https://doi.org/10.1155/2017/6827323

  • Bhattacharya A, Sood P, Citovsky V (2010) The roles of plant phenolics in defence and communication during Agrobacterium and Rhizobium infection. Molec Plant Pathol 11:705–719

    Article  CAS  Google Scholar 

  • Bi HH, Song YY, Zeng RS (2007) Biochemical and molecular responses of host plants to mycorrhizal infection and their roles in plant defence. Allelopathy J 20:15

    Google Scholar 

  • Boudet AM (2007) Evolution and current status of research in phenolic compounds. Phytochemistry 68:2722–2735

    Article  CAS  PubMed  Google Scholar 

  • Buresh RJ, Smithson PC, Hellums DT (1997) Building soil phosphorus capital in Africa. In: Buresh, R.J., Sanchez, P.A., and Calhoun, F. (eds.), Replenishing soil fertility in Africa. SSSA/ASA, Madison, WI, pp. 111–149. https://doi.org/10.2136/sssaspecpub51.c6

  • Chapin FS (1991) Integrated responses of plants to stress. BioSci 41:29–36. https://doi.org/10.2307/1311538

    Article  Google Scholar 

  • Chen WM, James EK, Prescott AR, Kierans M, Sprent JI (2003) Nodulation of Mimosa spp. by the β-proteobacterium Ralstonia taiwanensis. Molec Plant-Microbe Interact 16:1051–1061. https://doi.org/10.1094/MPMI.2003.16.12.1051

    Article  CAS  Google Scholar 

  • Demkura PV, Abdala G, Baldwin IT, Ballaré CL (2010) Jasmonate-dependent and-independent pathways mediate specific effects of solar ultraviolet B radiation on leaf phenolics and antiherbivore defence. Plant Physiol 152:1084–1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon RA (2001) Natural products and plant disease resistance. Nature 411:843–847

    Article  CAS  PubMed  Google Scholar 

  • Doran JW, Zeiss MR (2000) Soil health and sustainability: managing the biotic component of soil quality. App Soil Ecol 15:3–11. https://doi.org/10.1016/S0929-1393(00)00067-6

    Article  Google Scholar 

  • Doso Jnr S (2014) Land degradation and agriculture in the Sahel of Africa: causes, impacts and recommendations. J Agric Sci App 3:67–73. https://doi.org/10.14511/jasa.2014.030303

    Article  Google Scholar 

  • Fey MV (2010) A short guide to the soils of South Africa, their distribution, properties, classification, genesis, use and environmental significance. In: Soils of South Africa, Cambridge University press, pp. 11–53. Editor: Karoline Hanks

  • Franco JA, Bañón S, Vicente MJ, Miralles J, Martínez-Sánchez JJ (2011) Root development in horticultural plants grown under abiotic stress conditions–a review. J Hort Sci Biotech 86:543–556. https://doi.org/10.1080/14620316.2011.11512802

    Article  Google Scholar 

  • Gajdanowicz P, Michard E, Sandmann M, Rocha M, Corrêa LGG, Ramírez-Aguilar SJ, Gómez-Porras JL, González W, Thibaud JB, Van Dongen JT, Dreyer I (2011) Potassium (K+) gradients serve as a mobile energy source in plant vascular tissues. Proc Nat Acad Sci 108:864–869. https://doi.org/10.1073/pnas.1009777108

    Article  CAS  PubMed  Google Scholar 

  • Ghasemzadeh A, Jaafar HZ, Rahmat A (2010) Elevated carbon dioxide increases contents of flavonoids and phenolic compounds, and antioxidant activities in Malaysian young ginger (Zingiber officinale Roscoe.) varieties. Molecules 15:7907–7922. https://doi.org/10.3390/molecules15117907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghasemzadeh A, Jaafar HZ, Rahmat A, Wahab PEM, Halim MRA (2010) Effect of different light intensities on total phenolics and flavonoids synthesis and anti-oxidant activities in young ginger varieties (Zingiber officinale Roscoe). Int J Molec Sci 11:3885–3897. https://doi.org/10.3390/ijms11103885

    Article  CAS  Google Scholar 

  • Giesler R, Petersson T, Högberg P (2002) Phosphorus limitation in boreal forests: effects of aluminum and iron accumulation in the humus layer. Ecosystems 5:300–314. https://doi.org/10.1007/s10021-001-0073-5

    Article  CAS  Google Scholar 

  • Gruz J, Novák O, Strnad M (2008) Rapid analysis of phenolic acids in beverages by UPLC–MS/MS. Food Chem 111:789–794. https://doi.org/10.1016/j.foodchem.2008.05.014

    Article  CAS  Google Scholar 

  • Güsewell S (2004) N: P ratios in terrestrial plants: variation and functional significance. New Phytol 164:243–266

    Article  PubMed  Google Scholar 

  • Harper KT, Pendleton RL (1993) Cyanobacteria and cyanolichens: can they enhance availability of essential minerals for higher plants? The Great Basin Naturalist 53:59–72. https://www.jstor.org/stable/41712758

  • Hassan MK, McInroy JA, Kloepper JW (2019) The interactions of rhizodeposits with plant growth-promoting rhizobacteria in the rhizosphere: a review. Agriculture 9:142

    Article  CAS  Google Scholar 

  • Haumaier L, Zech W (1995) Black carbon—possible source of highly aromatic components of soil humic acids. Organic Geochem 23:191–196. https://doi.org/10.1016/0146-6380(95)00003-W

    Article  CAS  Google Scholar 

  • Huang B, Fry JD (1998) Root anatomical, physiological, and morphological responses to drought stress for tall fescue cultivars. Crop Sci 38:1017–1022. https://doi.org/10.2135/cropsci1998.0011183X003800040022x

    Article  Google Scholar 

  • Husson O (2013) Redox potential (Eh) and pH as drivers of soil/plant/microorganism systems: a transdisciplinary overview pointing to integrative opportunities for agronomy. Plant Soil 362:389–417. https://doi.org/10.1007/s11104-012-1429-7

    Article  CAS  Google Scholar 

  • Jaleel CA, Riadh K, Gopi R, Manivannan P, Ines J, Al-Juburi HJ, Chang-Xing Z, Hong-Bo S, Panneerselvam R (2009) Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints. Acta Physiol Plant 31:427–436. https://doi.org/10.1007/s11738-009-0275-6

    Article  CAS  Google Scholar 

  • John Bullied W, Buss TJ, Kevin Vessey J (2002) Bacillus cereus UW85 inoculation effects on growth, nodulation and N accumulation in grain legumes: field studies. Can J Plant Sci 82:291–298. https://doi.org/10.4141/P01-048

    Article  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329. https://doi.org/10.1038/nature05286

    Article  CAS  PubMed  Google Scholar 

  • Khang DT, Dung TN, Elzaawely AA, Xuan TD (2016) Phenolic profiles and antioxidant activity of germinated legumes. Foods 5:27. https://doi.org/10.3390/foods5020027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koerselman W, Meuleman AFM (1996) The vegetation N: P ratio: a new tool to detect the nature of nutrient limitation. J App Ecol 33:1441–1450

    Article  Google Scholar 

  • Koksal G, Gurkan E, Kucukcezzar R (1988) Relationship of potassium deficiency and abscisic acid metabolism in Soyabean plants. J Plant Nutri 11:517–523. https://doi.org/10.1080/01904168809363819

    Article  CAS  Google Scholar 

  • Kunwar VS, Lamichhane J, Gauchan DP (2018) Strategies to improve phosphorus availability in a sustainable agricultural system. Int J Inn Sci Res Tech 3:323–331

    Google Scholar 

  • Lal R (2008) Soils and sustainable agriculture. Rev Agr Sust Develop 28:57–64. https://doi.org/10.1051/agro:2007025

    Article  Google Scholar 

  • Lambers H, Raven JA, Shaver GR, Smith SE (2008) Plant nutrient-acquisition strategies change with soil age. Trends Ecol Evo 23:95–103. https://doi.org/10.1016/j.tree.2007.10.008

    Article  Google Scholar 

  • Lattanzio V (2013) Phenolic Compounds: Introduction 50. Nat Prod pp 1543–1580

  • Lema MA, Majule AE (2009) Impacts of climate change, variability and adaptation strategies on agriculture in semi-arid areas of Tanzania: The case of Manyoni District in Singida Region, Tanzania. Afr J Environ Sci Tech 3:206–218. https://doi.org/10.1016/j.tree.2007.10.008

  • Li ZH, Wang Q, Ruan X, Pan CD, Jiang DA (2010) Phenolics and plant allelopathy. Molecules 15:8933–8952. https://doi.org/10.3390/molecules15128933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lü XT, Reed S, Yu Q, He NP, Wang ZW, Han XG (2013) Convergent responses of nitrogen and phosphorus resorption to nitrogen inputs in a semiarid grassland. Glob Change Biol 19:2775–2784

    Article  Google Scholar 

  • Lyman OR (1998) An introduction to statistical methods and data analysis, 4th edn. Duxbury Press, United State, pp 12–19

    Google Scholar 

  • Magadlela A, Pérez-Fernández MA, Kleinert A, Dreyer LL, Valentine AJ (2016) Source of inorganic N affects the cost of growth in a legume tree species (Virgilia divaricata) from the Mediterraneantype Fynbos ecosystem. J Plant Ecol 9:752–761

    Article  Google Scholar 

  • Maisels F, Gautier-Hion A, Gautier JP (1994) Diets of two sympatric colobines in Zaire: more evidence on seed-eating in forests on poor soils. Int J Primatol 15:681. https://doi.org/10.1007/BF02737427

    Article  Google Scholar 

  • Mandal SM, Mandal M, Das AK, Pati BR, Ghosh AK (2009) Stimulation of indoleacetic acid production in a Rhizobium isolate of Vigna mungo by root nodule phenolic acids. Arch Microbiol 191:389–393

    Article  CAS  PubMed  Google Scholar 

  • Mandal SM, Chakraborty D, Dey S (2010) Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signal Behav 5:359–368. https://doi.org/10.4161/psb.5.4.10871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandiringana OT, Mnkeni PNS, Mkile Z, Van Averbeke W, Van Ranst E, Verplancke H (2005) Mineralogy and fertility status of selected soils of the Eastern Cape Province, South Africa. Comm Soil Sci Plant Analysis 36:2431–2446

    Article  CAS  Google Scholar 

  • Mantri N, Patade V, Penna S, Ford R, Pang E (2012) Abiotic stress responses in plants: Present and future. Abiotic Stress Responses in Plants. Springer, New York, NY, USA, pp 1–19

    Google Scholar 

  • Matiwane SE, Aremu AO, Valentine AJ, Magadlela A (2019) Nutritional status of KwaZulu-Natal soils affects microbe symbiosis, nitrogen utilization and growth of Vigna radiata (L.) R. Walczak s Afri J Bot 126:115–120. https://doi.org/10.1016/j.sajb.2019.06.007

    Article  CAS  Google Scholar 

  • McCallum MH, Peoples MB, Connor DJ (2000) Contributions of nitrogen by field pea (Pisum sativum L.) in a continuous cropping sequence compared with a lucerne (Medicago sativa L.)-based pasture ley in the Victorian Wimmera. Austral J Agric Res 51:13–22. https://doi.org/10.1071/AR99023

    Article  Google Scholar 

  • Meena VS, Bahadur I, Maurya BR, Kumar A, Meena RK, Meena SK, Verma JP (2016) Potassium-solubilizing microorganism in evergreen agriculture: an overview. In Potassium solubilizing microorganisms for sustainable agriculture, Springer, New Delhi. pp. 1–20. Editors: Vijay Singh Meena, Bihari Ram Maurya, Jay Prakash Verma and Ram Swaroop Meena. https://doi.org/10.1007/978-81-322-2776-2

  • Mishra PK, Mishra S, Selvakumar G, Kundu S, Shankar Gupta H (2009) Enhanced soybean (Glycine max L.) plant growth and nodulation by Bradyrhizobium japonicum-SB1 in presence of Bacillus thuringiensis-KR1. Acta Agric. Scan Section B-Soil and Plant Sci 59:189–196. https://doi.org/10.1080/09064710802040558

    Article  CAS  Google Scholar 

  • Moran JF, Klucas RV, Grayer RJ, Abian J, Becana M (1997) Complexes of iron with phenolic compounds from soybean nodules and other legume tissues: prooxidant and antioxidant properties. Free Radic Biol Med 22:861–870

    Article  CAS  PubMed  Google Scholar 

  • Mortimer PE, Pérez-Fernández MA, Valentine AJ (2008) The role of arbuscular mycorrhizal colonization in the carbon and nutrient economy of the tripartite symbiosis with nodulated Phaseolus vulgaris. Soil Biol Biochem 40:1019–1027

    Article  CAS  Google Scholar 

  • Nambiar KKM, Gupta AP, Fu Q, Li S (2001) Biophysical, chemical and socio-economic indicators for assessing agricultural sustainability in the Chinese coastal zone. Agri Ecos Environ 8:209–214. https://doi.org/10.1016/S0167-8809(01)00279-1

    Article  Google Scholar 

  • Nannipieri P, Ascher J, Ceccherini M, Landi L, Pietramellara G, Renella G (2017) Microbial diversity and soil functions. Europ J Soil Sci 54:655–670. https://doi.org/10.1111/ejss.4_12398

    Article  CAS  Google Scholar 

  • Nielsen KL, Eshel A, Lynch JP (2001) The effect of phosphorus availability on the carbon economy of contrasting common bean (Phaseolus vulgaris L.) genotypes. J Exp Bot 52:329–339

    CAS  PubMed  Google Scholar 

  • Ohyama T (2017) The Role of Legume-rhizobium symbiosis in sustainable agriculture. In Legume Nitrogen Fixation in Soils with Low Phosphorus Availability. Springer, Cham. pp. 1–20. Editors: Saad Sulieman and Lam-Son Phan Tran.

  • Onwuka MI, Ozurumba UV, Nkwocha OS (2016) Changes in soil pH and exchangeable acidity of selected parent materials as influenced by amendments in South East of Nigeria. J Geosci Environ Protec 4:80. https://doi.org/10.4236/gep.2016.45008

    Article  Google Scholar 

  • Parvaiz A, Satyawati S (2008) Salt stress and phyto-biochemical responses of plants—a review. Plant, Soil Environ 54:89–99. https://doi.org/10.17221/2774-PSE

    Article  CAS  Google Scholar 

  • Peng S, Eissenstat DM, Graham JH, Williams K, Hodge NC (1993) Growth depression in mycorrhizal citrus at high-phosphorous supply. Plant Physiol 101:1063–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Fernández MA, Elliot CP, Valentine A, Oyola JA (2019) Seed provenance determines germination responses of Rumex crispus (L.) under water stress and nutrient availability. J Plant Ecol 12:949–961

    Article  Google Scholar 

  • Pietta P, Minoggio M, Bramati L (2003) Plant polyphenols Structure, occurrence and bioactivity. Studies Natural Products Chem Elsevier 28:257–312

    Article  CAS  Google Scholar 

  • Prajapati K, Modi HA (2012) The importance of potassium in plant growth–a review. Indian J Plant Sci 1:177–186

    Google Scholar 

  • Puri A, Padda KP, Chanway CP (2016) Evidence of nitrogen fixation and growth promotion in canola (Brassica napus L.) by an endophytic diazotroph Paenibacillus polymyxa P2b–2R. Biol Fert Soils 52:119–125. https://doi.org/10.1007/s00374-015-1051-y

    Article  CAS  Google Scholar 

  • Ramakrishna A, Ravishankar GA (2011) Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav 6:1720–1731. https://doi.org/10.4161/psb.6.11.17613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rengel Z, Marschner P (2005) Nutrient availability and management in the rhizosphere: exploiting genotypic differences. New Phytol 168:305–312. https://doi.org/10.1111/j.1469-8137.2005.01558.x

    Article  CAS  PubMed  Google Scholar 

  • Rivas-San Vicente M, Plasencia J (2011) Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot 62:3321–3338. https://doi.org/10.1093/jxb/err031

    Article  CAS  PubMed  Google Scholar 

  • Robert CA, Ferrieri RA, Schirmer S, Babst BA, Schueller MJ, Machado RA, Arce CC, Hibbard BE, Gershenzon J, Turlings TC, Erb M (2014) Induced carbon reallocation and compensatory growth as root herbivore tolerance mechanisms. Plant, Cell & Environ 37:2613–2622. https://doi.org/10.1111/pce.12359

    Article  CAS  Google Scholar 

  • Roberts VG, Adey S, Manson AD (2003) An investigation into soil fertility in two resource-poor farming communities in KwaZulu-Natal (South Africa). South Afri J Plant Soil 20:146–151. https://doi.org/10.1080/02571862.2003.10634924

    Article  Google Scholar 

  • Rutigliano FA, D’Ascoli R, De Santo AV (2004) Soil microbial metabolism and nutrient status in a Mediterranean area as affected by plant cover. Soil Biol Biochem 36:1719–1729. https://doi.org/10.1016/j.soilbio.2004.04.029

    Article  CAS  Google Scholar 

  • Sanz-Saez A, Morales F, Arrese-Igor C, Aranjuelo I (2017) P Deficiency: a major limiting factor for rhizobial symbiosis. In: Legume Nitrogen Fixation in Soils with Low Phosphorus Availability. Springer, Cham. pp. 21–39. Editors: Saad Sulieman and Lam-Son Phan Tran. https://doi.org/10.1007/978-3-319-55729-8

  • Seneviratne G, Jayasinghearachchi HS (2003) Phenolic acids: possible agents of modifying N2-fixing symbiosis through rhizobial alteration? Plant Soil 252:385–395

    Article  CAS  Google Scholar 

  • Shearer G, Kohl DH (1986) N2-fixation in field settings: estimations based on natural 15N abundance. Funct Plant Biol 13:699–756

    CAS  Google Scholar 

  • Sheng XF, Zhao F, He LY, Qiu G, Chen L (2008) Isolation and characterization of silicate mineral-solubilizing Bacillus globisporus Q12 from the surfaces of weathered feldspar. Can J Microbiol 54:1064–1068. https://doi.org/10.1139/W08-089

    Article  CAS  PubMed  Google Scholar 

  • Siciliano SD, Palmer AS, Winsley T, Lamb E, Bissett A, Brown MV, van Dorst J, Ji M, Ferrari BC, Grogan P, Chu H (2014) Soil fertility is associated with fungal and bacterial richness, whereas pH is associated with community composition in polar soil microbial communities. Soil Biol Bioch 78:10–20. https://doi.org/10.1016/j.soilbio.2014.07.005

    Article  CAS  Google Scholar 

  • Stiles WC (2004) Soil analysis and interpretation. NY Fruit Quart 12:28–30

    Google Scholar 

  • Syed BA, Patel B (2014) Investigation and correlation of soil biotic and abiotic factors affecting agricultural productivity in semi-arid regions of North Gujarat, India. Int J Res Stud Biosci 2:18–29

    Google Scholar 

  • Tessier JT, Raynal DJ (2003) Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation. J Appl Ecol 40:523–534

    Article  CAS  Google Scholar 

  • Thiruvengadam M, Baskar V, Kim SH, Chung IM (2016) Effects of abscisic acid, jasmonic acid and salicylic acid on the content of phytochemicals and their gene expression profiles and biological activity in turnip (Brassica rapa ssp. rapa). Plant Growth Regul 80:377–390. https://doi.org/10.1007/s10725-016-0178-7

    Article  CAS  Google Scholar 

  • Vaughan D, Ord B (1990) Influence of phenolic acids on morphological changes in roots of Pisum sativum. J Sci Food Agric 52:289–299

    Article  CAS  Google Scholar 

  • Villadas PJ, Díaz-Díaz S, Rodríguez-Rodríguez A, Arco-Aguilar MD, Fernández-González AJ, Pérez-Yépez J, Arbelo C, González-Mancebo JM, Fernández-López M, León-Barrios M (2019) The Soil Microbiome of the Laurel Forest in Garajonay National Park (La Gomera, Canary Islands): comparing unburned and burned habitats after a wildfire. Forests 10:1051–1067. https://doi.org/10.3390/f10121051

    Article  Google Scholar 

  • Voroney RP (2007) The soil habitat. In Soil Microbiology, Ecology and Biochemistry (3rd Ed). Academic Press. pp. 25–49. Editor: Eldor A. Paul. https://doi.org/10.1016/B978-0-08-047514-1.50006-8

  • Wang Y, Shi Y, Li B, Shan C, Ibrahim M, Jabeen A, Xie G, Sun G (2012) Phosphate solubilization of Paenibacillus polymyxa and Paenibacillus macerans from mycorrhizal and non-mycorrhizal cucumber plants. African J Microbiol Research 6:4567–4573. https://doi.org/10.5897/AJMR12.261

    Article  CAS  Google Scholar 

  • Wang LY, Wang TS, Chen SF (2015) Cohnella capsici sp. nov., a novel nitrogen-fixing species isolated from Capsicum annuum rhizosphere soil, and emended description of Cohnella plantaginis. Antonie Van Leeuwenhoek 107:133–139. https://doi.org/10.1007/s10482-014-0310-5

    Article  CAS  PubMed  Google Scholar 

  • Williams K, Percival F, Merino J, Mooney HA (1987) Estimation of tissue construction cost from heat of combustion and organic nitrogen content. Plant Cell Environ 10:725–734

    Article  CAS  Google Scholar 

  • Williams J, Bordas V, Gascoigne H (2004) Conserving land and water for society: global challenges and perspectives. In: Conserving soil and water for society: Sharing solutions 13th ISCO, 2004. Paper no. 101. ISCO, Brisbane, Queensland (pp. 1–16).

  • Wu Y, Hendershot W (2010) The effect of calcium and pH on nickel accumulation in and rhizotoxicity to pea (Pisum sativum L.) root-empirical relationship and modelling. Environm Pollu 158:1850–1856

    Article  CAS  Google Scholar 

  • Zawoznik MS, Garrido LM, del Pero Martinez MA, Tomaro ML (2000) Effect of vanillin on growth and symbiotic ability of Bradyrhizobium sp. (Arachis) strain. Proc Int Plant Growth-promoting Rhizobacteria.

  • Zhalnina K, Dias R, de Quadros PD, Davis-Richardson A, Camargo FA, Clark IM, McGrath SP, Hirsch PR, Triplett EW (2015) Soil pH determines microbial diversity and composition in the park grass experiment. Microbial Ecol 69:395–406. https://doi.org/10.1007/s00248-014-0530-2

    Article  CAS  Google Scholar 

  • Zungu NS, Egbewale SO, Olaniran AO, Pérez-Fernández MA, Magadlela A (2020) Soil nutrition, microbial composition and associated soil enzyme activities in KwaZulu-Natal grasslands and savannah ecosystems soils. App Soil Ecol 155:103663

    Article  Google Scholar 

Download references

Acknowledgements

The technical assistance rendered by Lucie Slobodianová is greatly appreciated. We acknowledge the Central Analytical Facilities at Stellenbosch University and the Archeometry Department at the University of Cape Town for their research facilities. The authors would like to thank the National Research Foundation (NRF), South Africa for funding this work (grant no. UID 113576

Funding

The authors would like to thank the National Research Foundation (NRF), South Africa for funding this work (grant no. UID 113576). We also appreciate the financial support from the Czech Science Foundation (no. 17-06613S) and ERDF project “Development of pre-applied research in nanotechnology and biotechnology (No. CZ.02.1.01/0.0/0.0/17_048/0007323).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anathi Magadlela.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2567 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magadlela, A., Zungu, N.S., Khoza, T. et al. Metabolic Self-regulation of Pisum sativum L. Under Varying Soil Fertility in South Africa. J Soil Sci Plant Nutr 23, 177–189 (2023). https://doi.org/10.1007/s42729-022-00930-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42729-022-00930-9

Keywords

Navigation